Investigation of the characteristics of supercapacitor electrodes based on doped silicon-carbon films
- Autores: Bogush I.Y.1, Plugotarenko N.K.1
- 
							Afiliações: 
							- Institute of Nanotechnologies, Microelectronics and Equipment Engineering, Southern Federal University
 
- Edição: Volume 87, Nº 6 (2023)
- Páginas: 833-837
- Seção: Articles
- URL: https://rjeid.com/0367-6765/article/view/654381
- DOI: https://doi.org/10.31857/S0367676523701442
- EDN: https://elibrary.ru/VLQSVY
- ID: 654381
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Silicon-carbon films undoped and doped with manganese and nickel have been investigated by cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The charge storage process in silicon-carbon films is determined to be predominantly capacitive in nature. The best specific capacitance retention is observed for electrode samples containing nickel.
Sobre autores
I. Bogush
Institute of Nanotechnologies, Microelectronics and Equipment Engineering, Southern Federal University
							Autor responsável pela correspondência
							Email: inlys@sfedu.ru
				                					                																			                												                								Russia, 347900, Taganrog						
N. Plugotarenko
Institute of Nanotechnologies, Microelectronics and Equipment Engineering, Southern Federal University
														Email: inlys@sfedu.ru
				                					                																			                												                								Russia, 347900, Taganrog						
Bibliografia
- Tarascon J.M., Armand M. // Nature. 2001. V. 414. P. 359.
- Nishide H., Oyaizu K. // Science. 2008. V. 319. P. 737.
- Rogers J.A., Someya T., Huang Y. // Science. 2008. V. 327. P. 1603.
- Lipomi D.J., Bao Z. // Energy Environ. Sci. 2011. V. 4. P. 3314.
- Hussain I.M., Khalil A.M.R., Hussain F. // Energy Technol. 2021. V. 9. Art. No. 2001026.
- Khan S.U.D., Almutairi Z.A., Al-Zaid O.S. // Appl. Phys. 2020. V. 20. P. 582.
- Jintao Z., Zhenhai X., Liming D. // Sci. Advances. 2015. V. 1. Art. No. e1500564.
- Wu Z., Sun Y., Yuan-Zhi T.Y., Yang S. et al. // Chem. Soc. 2012. V. 134. P. 19532.
- Shakoor A., Rizvi T.Z., Sulaiman M. et al. // Sci. Mater. Electron. 2010. V. 21. P. 603.
- Barbieri O., Hahn M., Foelske A., Kotz R.J. // Electrochem. Soc. 2006. V. 153. Art. No. A2049.
- Hu C.C., Chen C.W., Chang H.K.J. // Electrochem. Soc. 2004. V. 151. Art. No. A281.
- Grigoryev M.N., Myasoedova T.N., Mikhailova T.S. // J. Phys. Conf. Ser. 2018. V. 1124. Art. No. 081043.
- Jagiello J., Chojnacka A., Pourhosseini S.E.M. et al. // Carbon. 2021. V. 178. P. 113.
- Tien-Yu Yi, Cheng-Wei Tai, Chi-Chang Hu. J. // Power Sources. 2021. V. 501. Art. No. 230029.
- Stoller M.D., Ruoff R.S. // Energy Environ. Sci. 2010. V. 9. P. 1294.
- Muhammad Sufyan Javed, Syed Shoaib Ahmad Shah, Shahid Hussain et al. // Chem. Eng. J. 2020. V. 382. Art. No. 122814.
- Cericola D., Spahr M.E. // Electrochim. Acta. 2016. V. 191. P.558.
- Devillers N., Jemei S., Péra M.C. et al. // J. Power Sources. 2014. V. 246. P. 596.
- Suss M.E., Baumann T.F., Worsley M.A. et al. // J. Power Sources. 2013. V. 241. P. 266.
- Jinhee Kang, John Wen, Shesha H. Jayaram et al. // Electrochim. Acta. 2014. V. 115. P. 587.
- Stoeckli F., Centeno T.A. // J. Mater. Chem. A. 2013. V. 1. P. 6865.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



