Differential gain of THz radiation in crystalline quartz plate in the field of pump wave
- Authors: Kazakov I.I.1, Guselnikov M.S.1, Kozlov S.A.1
- 
							Affiliations: 
							- ITMO University
 
- Issue: Vol 89, No 1 (2025)
- Pages: 57-62
- Section: Wave Phenomena: Physics and Applications
- URL: https://rjeid.com/0367-6765/article/view/683821
- DOI: https://doi.org/10.31857/S0367676525010107
- EDN: https://elibrary.ru/DBAFLS
- ID: 683821
Cite item
Abstract
The possibility to exploit nonlinear Fabry–Perot interferometers to differential gain of terahertz radiation in the field of a pump wave of the same frequency was theoretically considered. It is shown that in mirrorless nonlinear Fabry–Perot interferometer consisted of crystalline quartz plate, which reflection is determined by Fresnel reflection only, the regime of maximal differential gain of radiation with central frequency at 1 THz can be observed at thickness of working medium near 1 mm and at radiation intensity with order of magnitude at 108 W⋅cm−2.
			                About the authors
I. I. Kazakov
ITMO University
														Email: ikazzzakov@yandex.ru
				                					                																			                												                								St. Petersburg, Russia						
M. S. Guselnikov
ITMO UniversitySt. Petersburg, Russia
S. A. Kozlov
ITMO UniversitySt. Petersburg, Russia
References
- Луговой В.Н. // Квант. электрон. 1979. Т. 6. № 10. С. 2053
- Lugovoi V.N. // Sov. J. Quantum Electron. 1979. V. 9. No. 10. P. 1207.
- Gibbs H. Optical bistability: controlling light with light. Elsevier, 2012. 471 p.
- Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М: Наука, 1988. 310 с.
- Miller D.A.B. // Nature Photon. 2010. No. 4. P. 3.
- Tcypkin A.N., Melnik M.V., Zhukova M.O. et al. // Opt. Express. 2019. V. 27. No. 8. P. 10419.
- Francis K.J.G., Chong M.L.P., E Y., Zhang X.C. // Opt. Express. 2020. V. 45. No. 20. P. 5628.
- Novelli F., Ma C.-Y., Adhlakha N. et al. // Appl. Sci. 2020. V. 10. No. 15. P. 5290.
- Zhukova M.O., Melnik M.V., Vorontsova I.O. et al. // Photonics. 2020. V. 7. No. 4. P. 98.
- Tcypkin A.N., Zhukova M.O., Melnik M.V. et al. // Phys. Rev. Appl. 2021. V. 15. No. 5. Art. No. 054009.
- Artser I.R., Melnik M.V., Ismagilov A.O. et al. // Sci. Reports. 2022. V. 12. No. 1. Art. No. 9019.
- Wu Q., Huang Y., Lu. Y. et al. // Light: Sci. Appl. 2023.
- Zibod S., Rasekh P., Yildrim M. et al. // Adv. Opt. Mater. 2023. V. 11. No. 15. Art. No. 2202343.
- Nabilkova A.O., Ismagilov A.O., Melnik M.V. et al. // Opt. Letters. 2023. V. 48. No. 5. P. 1312.
- Гусельников М.С., Жукова М.О., Козлов С.А. // Опт. журн. 2022. Т. 89. № 7. С. 3
- Guselnikov M.S., Zhukova M.O., Kozlov S.A. // J. Opt. Technol. 2022. V. 89. No. 7. P. 371.
- Гусельников М.С., Жукова М.О., Козлов С.А. // Опт. и спектроск. 2023. Т. 131. № 2. С. 287.
- Miller D.A.B., Smith S.D., Johnston A. // Appl. Phys. Lett. 1979. V. 35. No. 9. P. 658.
- Власов С.Н., Таланов В.И. Самофокусировка волн. Нижний Новгород: ИПФ РАН, 1997. 217 с.
- Boyd R.W. Nonlinear optics. Elsevier, 2008. 640 p.
- Weber M., Milam D., Smith W. // Opt. Engin. 1978. V. 17. No. 5. P. 463.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					