Influence of the number of granules on the magnetization of multi-core particles
- 作者: Sokolsky S.А.1, Solovyova A.Y.1, Elfimova E.A.1, Ivanov А.О.1
- 
							隶属关系: 
							- Ural Federal University
 
- 期: 卷 88, 编号 10 (2024)
- 页面: 1570-1576
- 栏目: Physics of magnetic fluids and composite materials based on them
- URL: https://rjeid.com/0367-6765/article/view/681726
- DOI: https://doi.org/10.31857/S0367676524100117
- EDN: https://elibrary.ru/DSUTVM
- ID: 681726
如何引用文章
详细
We investigated the static magnetic response of the multi-core particles (MCP) with a different number of nanocores. The cases of the MCPs containing 7, 8, 32, 33, 123 and 136 granules are considered. Their position remains unchanged in the nodes of a regular cubic lattice, but the magnetic moments can freely rotate inside the cores. The magnetization of the MCPs is determined by computer simulation using the Monte Carlo method and theoretically.
全文:
 
												
	                        作者简介
S. Sokolsky
Ural Federal University
							编辑信件的主要联系方式.
							Email: Sokolsky2304@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Ekaterinburg						
A. Solovyova
Ural Federal University
														Email: Sokolsky2304@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Ekaterinburg						
E. Elfimova
Ural Federal University
														Email: Sokolsky2304@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Ekaterinburg						
А. Ivanov
Ural Federal University
														Email: Sokolsky2304@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Ekaterinburg						
参考
- Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
- Алехина Ю.А., Макарова Л.А., Наджарьян Т.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 882; Alekhina Y.A., Makarova L.A., Nadzharyan T.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 801.
- Ivanov A.O., Ludwig F. // Phys. Rev. E. 2020. V. 102. Art. No. 32603.
- Kratz H., Mohtashamdolatshahi A., Eberbeck D. et al. // Nanomaterials E. 2021. No. 11. P. 1532.
- Dutz S., Clement J.H., Eberbeck D. et al. // JMMM E. 2009. V. 321. P. 1501.
- Delgado A., Gallo-Cordova A., Dıaz-Ufano C. et al. // J. Phys. Chem. E. 2023. V. 127. P. 4714.
- Trisnanto S.B., Takemura Y. // J. Appl. Phys. E. 2021. V. 130. Art. No. 064302.
- Laherisheth Z., Parekh K., Upadhyay R.V. // J. Nanofluids. E. 2018. No. 7. P. 292.
- Green L.A., Thuy T.T., Mott D.M. et al. // RSC Advances E. 2014. No. 4. P. 1039.
- Schaller V., Wahnstrom G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
- Schaller V., Wahnstrom G., Sanz-Velasco A. et al. // JMMM E. 2009. V. 321. P. 1400.
- Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
- Kuznetsov A.A., Novak E.V., Pyanzina E.S., Kantorovich S.S. // J. Mol. Liquids. 2022. V. 359. Art. No. 119373.
- Solovyova A.Y., Kuznetsov A.A., Elfimova E.A. // Physica A. 2020. V. 558. Art. No. 124923.
- Бондарев А.В., Пашуева И.М., Ожерельев В.В., Батаронов И.Л. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 924; Bondarev A.V., Pashueva I.M., Ozherelyev V.V., Bataronov I.L. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 841.
- Муртазаев А.К., Ибаев З.Г. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 930; Murtazaev A.K., Ibaev Z.G. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 847.
- Solovyova A.Y., Sokolsky A.A., Ivanov A.O., Elfimova E.A. // Smart Mater. Struct. 2023. V. 32. Art. No. 115005.
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted##



