Multiphoton ionization in a photonic crystal based on carbon nanotubes under the action of a few cycle optical pulse
- Authors: Dvuzhilova Y.V.1, Dvuzhilov I.S.1, Belonenko M.B.1
- 
							Affiliations: 
							- Volgograd State University
 
- Issue: Vol 88, No 1 (2024)
- Pages: 80-84
- Section: Wave Phenomena: Physics and Applications
- URL: https://rjeid.com/0367-6765/article/view/654788
- DOI: https://doi.org/10.31857/S0367676524010148
- EDN: https://elibrary.ru/SABIFU
- ID: 654788
Cite item
Abstract
We considered a theoretical model of the interaction of a one-dimensional few cycles optical pulse with a nonlinear medium of semiconductor carbon nanotubes, which has a spatial modulation of the refractive index in the direction of pulse propagation (a one-dimensional photonic crystal). The results of the dependence of the rate of one- and two-photon ionization on the intensity of the short-wavelength pulse are shown. The effect of additional external electric and magnetic fields on the photoionization rate is considered.
Full Text
 
												
	                        About the authors
Yu. V. Dvuzhilova
Volgograd State University
														Email: dvuzhilov.ilya@volsu.ru
				                					                																			                												                	Russian Federation, 							Volgograd						
I. S. Dvuzhilov
Volgograd State University
							Author for correspondence.
							Email: dvuzhilov.ilya@volsu.ru
				                					                																			                												                	Russian Federation, 							Volgograd						
M. B. Belonenko
Volgograd State University
														Email: dvuzhilov.ilya@volsu.ru
				                					                																			                												                	Russian Federation, 							Volgograd						
References
- Yablonovitch E. // Phys. Rev. Let. 1987. V. 58. No. 20. P. 2059.
- John S. // Phys. Rev. Let. 1987. V. 58. No 23. P. 2486.
- Joannopoulos J.D., Meade R.D., Winn J.N., Photonic crystals. Oxford: Princeton University Press, 1995. 305 p.
- Crosignani B., Cutolo A., di Porto P. // J. Opt. Soc. Amer. B. 1982. V. 72. P. 515.
- Елецкий А.В. // УФН 1997. Т. 167. № 8. С. 945; Eletskii A.V. // Phys. Usp. 1997. V. 167. No. 8. P. 899.
- Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of fullerenes and carbon nanotubes. San Diego: Academic Press, 1996. 965 p.
- Харрис П., Углеродные нанотрубы и родственные структуры. Новые материалы ХХI века. М.: Техносфера, 2003. 336 с.
- Belonenko M.B., Demushkina E.V., Lebedev N.G. // J. Russ. Laser Res. 2006. V. 27. No 5. P. 457.
- Белоненко М.Б., Демушкина Е.В., Лебедев Н.Г. // ФТТ. 2008. Т. 50. № 2. С. 368; Belonenko M.B., Demushkina E.V., Lebedev N.G. // Phys. Solid State. 2008. V. 50. No. 2. P. 383.
- Couairona A., Mysyrowicz A. // Phys. Reports. 2007. V. 441. P. 47.
- Белоненко М.Б., Невзорова Ю.В. // Изв. РАН. Сер. физ. 2014. Т. 78. № 12. С. 1626; Belonenko M.B., Nevzorova J.V. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. No. 12. P. 1333.
- Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // EPJ D. 2015. V. 69. No. 5. P. 129.
- Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // Appl. Phys. B. 2017. V. 123. No. 7. P. 196.
- Dvuzhilova Y.V., Dvuzhilov I.S., Belonenko M.B. // J. Nano. Electronic Phys. 2021. V. 13. No 1. P. 1.
- Tans S.J., Devoret M.H., Dai H. et al. // Nature. 1997. V. 386. P. 474.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



