Influence of silicon dioxide on the structure and dielectric properties of barium titanate
- Authors: Korotkov L.N.1, Tolstykh N.A.1, Borodin N.N.1, Kashirin M.A.1, Anisimov R.G.1, Popov S.V.2, Pankova M.A.3
- 
							Affiliations: 
							- Voronezh State Technical University
- Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy
- Voronezh Institute of the Ministry of Internal Affairs of Russia
 
- Issue: Vol 88, No 5 (2024)
- Pages: 716-721
- Section: Physics of ferroelectrics
- URL: https://rjeid.com/0367-6765/article/view/654675
- DOI: https://doi.org/10.31857/S0367676524050046
- EDN: https://elibrary.ru/OXRQGO
- ID: 654675
Cite item
Abstract
The influence of silicon dioxide on the structure and dielectric properties of ceramic barium titanate was studied. The obtained results show that Si in concentrations up to 1 mol. % enters to the BaTiO3 lattice, forming the BaTi1-xSixO3 solid solution. Doping barium titanate with silicon leads to a decrease in the size of the crystal cell, a slight diffuseness of the ferroelectric phase transition, a decrease in its temperature and the appearance of signs of a relaxer ferroelectric.
Full Text
 
												
	                        About the authors
L. N. Korotkov
Voronezh State Technical University
							Author for correspondence.
							Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394026						
N. A. Tolstykh
Voronezh State Technical University
														Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394026						
N. N. Borodin
Voronezh State Technical University
														Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394026						
M. A. Kashirin
Voronezh State Technical University
														Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394026						
R. G. Anisimov
Voronezh State Technical University
														Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394026						
S. V. Popov
Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy
														Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394064						
M. A. Pankova
Voronezh Institute of the Ministry of Internal Affairs of Russia
														Email: l_korotkov@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh, 394065						
References
- Прокопало О.И., Фесенко Е.Г., Гавриляченко В.Г. и др. Титанат бария. Ростов-на-Дону.: Изд. РГУ, 1970. 214 с.
- Смоленский Г.А. и др. Сегнетоэлектрики и антисегнетоэлектрики. Л.: Наука, 1971. 476 с.
- Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
- Rabe K.M., Ahn C.H., Triscone J.-M. Physics of ferroelectrics: a modern perspective Berlin: Springer-Verlag, 2007. 388 p.
- Толстых Н.А., Короткова Т.Н., Аль Джаафари Ф.Д. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 9. С. 1196; Tolstykh N.A., Korotkova T.N., Al’ Dzhaafari F.D. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 9. P. 1086.
- Lemanov V.V., Smirnova E.P., Syrnikov P.P., Tarakanov E.A. // Phys. Rev. B. 1996. V. 54. No. 5. P. 3151.
- Gatea H.A., Shoja S.J., Albazoni H.J. // J. Miner. Met. Mater. Soc. 2023. V. 75. P. 4470.
- Weber U., Greuel G., Boettger U. et al. // J. Amer. Ceram. Soc. 2001. V. 84. No. 4. P. 759.
- Ciomaga C.E., Calderone R., Buscaglia M.T. et al. // J. Optoelectron. Adv. Mater. 2006. V. 8. No. 3. P. 944.
- Jeon H.-P., Lee S.-K., Kim S.-W. et al. // Mater. Chem. Phys. 2005. V. 94. No. 2—3. P. 185.
- Wang J., Tang L., Shenn B., Zhai J. // Ceram. Int. 2014. V. 40. P. 2261.
- Zhang Y., Cao M., Yao Z. et al. // Mater. Res. Bull. 2015. V. 67. P. 70.
- Lu X., Tong Y., Talebinezhad H. et al. // Proc. 2017 ISAF IWATMD PFM. (Atlanta, 2017). P. 56.
- Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011. 175 с.
- Diao C., Liu H., Hao H. et al. // Ceram. Int. 2014. V. 40. P. 2261.
- Al-jaafari F.M.D., Mohammed M.A., Shahad S.H. et al. // Ferroelectrics. 2023. V. 612. P. 144.
- Гинье А. Рентгенография кристаллов. Теория и практика. М.: ФИЗМАТЛИТ, 1961. 604 с.
- https://dpva.ru/Guide/GuidePhysics/Length/IonicRadius.
- Landolt-Börnstein. Group III Condensed Matter. V. 36A1. Berlin, Heidelberg: Springer-Verlag, 2011.
- Фельц А. Аморфные и стеклообразные неорганические твердые тела. М.: Мир, 1986. 556 с.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



