Magnetic and resistive characteristics of the SrMnO3/La0.7Sr0.3MnO3 heterostructure in a wide temperature range
- Autores: Sizov V.E.1, Shaikhulov T.A.2
- 
							Afiliações: 
							- Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino Branch
- Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
 
- Edição: Volume 87, Nº 10 (2023)
- Páginas: 1507-1510
- Seção: Articles
- URL: https://rjeid.com/0367-6765/article/view/654597
- DOI: https://doi.org/10.31857/S0367676523702630
- EDN: https://elibrary.ru/PTFSFX
- ID: 654597
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Magnetic and resistive properties of the antiferromagnet–ferromagnet SrMnO3 La0.7Sr0.3MnO3 heterostructure were studied in the temperature range of 50–300 K using magnetotransport measurements. It is established that in the heterostructure, the SrMnO3 layer is in an antiferromagnetic state at room temperature, which is higher than its temperature for a single layer, and the magnetization of the heterostructure exhibits the properties of unidirectional anisotropy. This conclusion is also confirmed by the ferromagnetic resonance spectra
Sobre autores
V. Sizov
Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino Branch
							Autor responsável pela correspondência
							Email: sizov@fireras.su
				                					                																			                												                								Russia, 141190, Fryazino						
T. Shaikhulov
Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
														Email: sizov@fireras.su
				                					                																			                												                								Russia, 125000, Moscow						
Bibliografia
- Cheng Zhang, Shuaishuai Ding, Kaiming Qiao et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 28442.
- Nogues J., Schuller K.I. // J. Magn. Magn. Mater. 1999. V. 192. P. 203.
- Ramirez A.P. // J. Phys. Cond. Matter. 1997. V. 9. No. 39. P. 8171.
- Coey J.M.D., Viret M., von Molnar S. // Adv. Phys. 1999. V. 48. P. 167.
- du Trémolet de Lacheisserie É., Gignoux D., Schlenker M. Magnetism II – materials and applications. Norwell: Kluwer, 2002. 552 p.
- Bason Y., Klein L., Yau J.-B. et al. // Appl. Phys. Lett. 2004. V. 84. No. 14. P. 2593.
- Bason Y., Klein L., Yau J.-B., X. Hong et al. // J. Appl. Phys. 2006. V. 99. No. 8. Art. No. 08R701.
- Dahlberg E.D., Riggs K., Printz G.A. // J. Appl. Phys. 1988. V. 63. No. 8. P. 4270.
- Rijks Th.G.S.M., Coehoorn R., de Jong M.J.M. // Phys. Rev. B. 1995. V. 51. P. 283.
- Kuhlow B., Lambeck M., Schroeder-Furst H. et al. // Z. Angew. Phys. 1971. V. 32. P. 54.
- Miller B.H., Dahlberg E.D. // Appl. Phys. Lett. 1996. V. 69. P. 3932.
- Chen Y., Lottis D.K., Dahlberg E.D. // J. Appl. Phys. 1991. V. 70. No. 10. P. 5822.
- Chen Y., Lottis D.K., Dahlberg E.D. // Mod. Phys. Lett. 1991. V. 5. P. 1781.
- Roux-Buisson H., Bruyere J.C. // Czech J. Phys. B. 1971. V. 21. P. 516.
- Jin S., Tiefel T.H., McCormack M. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films // Science. 1994. V. 264. P. 413.
- Hwang H.Y., Cheong S.-W., Ong N.P., Batlogg B. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3 // Phys. Rev. Lett. 1996. V. 77. P. 2041.
- Ziese M. Extrinsic magnetotransport phenomena in ferromagnetic oxides // Rep. Prog. Phys. 2002. V. 65. P. 143.
- Coey J.M.D., Viret M., von Molna’r S. // Adv. Phys. 1999. V. 48. P. 167.
- Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // УФН. 2020. Т. 190. № 10. С. 1009; Nikitov S.A., Safin A.R., Kalyabin D.V. et al. // Phys. Usp. 2020. V. 63. No. 10. P. 945.
- Park J.-H., Vescovo E., Kim H.-J. et al. // Phys. Rev. Lett. 1998. V. 81. No. 9. P. 1953.
- Изюмов Ю.А., Скрябин Ю.Н. // УФН. 2001. Т. 171. № 2. С. 121.
- Yan Wu, Suzukia Y., Ru¨diger U. et al. // Appl. Phys. Lett. 1999. V. 75. № 15. P. 2295.
- Chaluvadi S.K., Ajejas F., Orgiani P. et al. // J. Physics D. 2020. V. 53. P. 375005.
- Dho J., Hur N.H., Kim I.S., Park Y.K. // J. Appl. Phys. 2003. V. 94. No. 12. P. 7670.
- Søndena R., Ravindran P., Stølen S. et al. // Phys. Rev. B. 2006. V. 74. No. 5. Art. No. 144102.
- Nalecz D.M., Bujakiewicz-Koronska R., Radwanski R.J. // Ferroelectrics. 2015. V. 483. P. 86.
- Maurel L., Marcano N., Prokscha T. et al. // Phys. Rev. B. 2015. V. 92. No. 2. Art. No. 024419.
- Шайхулов Т.А., Овсянников Г.А., Демидов В.В., Андреев Н.В. // ЖЭТФ. 2019. Т. 156. № 1. С. 135.
- Шайхулов Т.А., Сафин А.Р., Станкевич К.Л. и др. // Письма в ЖЭТФ. 2023. Т. 117. № 8. С. 620.
- Li F., Song C., Wang Y.Y. et al. // Sci. Reports. 2015. V. 5. P. 16187.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



