Features of the crystal structure of 2D honeycomb frustrated magnet Li2Ni2TeO6
- Autores: Susloparova A.E.1, Fokin N.S.1, Kurbakov A.I.1
- 
							Afiliações: 
							- Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
 
- Edição: Volume 87, Nº 11 (2023)
- Páginas: 1574-1579
- Seção: Articles
- URL: https://rjeid.com/0367-6765/article/view/654556
- DOI: https://doi.org/10.31857/S0367676523702733
- EDN: https://elibrary.ru/EIIJKT
- ID: 654556
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Using neutron powder diffraction at a temperature of 35 K, slightly above the Neel temperature, the features of the crystal structure of two samples of layered honeycomb oxides of the same stoichiometric composition Li2Ni2TeO6 synthesized from precursors, Na2Ni2TeO6 and K2Ni2TeO6, were determined. They have a similar crystal structure, hexagonal space group P63/mcm, structure type P2, but there is a significant difference in the distances between the layers. Both Li2Ni2TeO6 samples crystallize into the orthorhombic space group Cmca, with minor differences in the unit lattice parameters. If Li2Ni2TeO6 from the potassium precursor is single-phase, then the compound from the sodium precursor contains 16 wt % of an additional phase with the same Li2Ni2TeO6 stoichiometry, but more deformed with monoclinic distortions described by the С2/m space group.
Sobre autores
A. Susloparova
Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
							Autor responsável pela correspondência
							Email: susloparova_ae@pnpi.nrcki.ru
				                					                																			                												                								Russia, 188300, Gatchina						
N. Fokin
Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
														Email: susloparova_ae@pnpi.nrcki.ru
				                					                																			                												                								Russia, 188300, Gatchina						
A. Kurbakov
Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”
														Email: susloparova_ae@pnpi.nrcki.ru
				                					                																			                												                								Russia, 188300, Gatchina						
Bibliografia
- Kanyolo G.M., Masese T., Matsubara N. et al. // Chem. Soc. Rev. 2021. V. 50. P. 3990.
- Васильев А.Н., Волкова О.С., Зверева А.А., Маркина М.М. Низкоразмерный магнетизм. М.: Физматлит, 2018. 304 с.
- Kitaev A. // Ann. Phys. 2006. V. 32. P. 2.
- Стрельцов С.В., Хомский Д.И. // УФН. 2017. Т. 187. № 11. С. 1205; Streltsov S.V., Khomskii D.I. // Phys. Usp. 2017. No. 6. P. 1121.
- Tokura Y., Kanazawa N. // Chem. Rev. 2021. V. 121. P. 2857.
- Bauer A., Pfleiderer C. // Springer Ser. Mater. Sci. 2016. V. 228. P. 1.
- Pu Y., Liu Y., Liu D. et al. // Int. J. Hydrogen Energy. 2018. V. 43. P. 17271.
- Kadari R., Velchuri R., Sreenu K et al. // Mater. Res. Express. 2016. V. 3. Art. No. 115902.
- Evstigneeva M.A., Nalbandyan V.B., Petrenko A.A. et al. // Chem. Mater. 2011. V. 23. P. 1174.
- Sau K., Kumar P.P. // J. Phys. Chem. C. 2015. V. 119. P. 18 030.
- Masese T., Yoshii K., Yamaguchi Y. et al. // Nature Commun. 2018. V. 9. Art. No. 3823.
- Yang Z., Jiang Y., Deng L. et al. // J. Power Sources. 2017. V. 360. P. 319.
- Jia Zh., Jiang X., Lin Zh., Xia M. // Dalton Trans. 2018. V. 47. P. 16388.
- Kuchugura M.D., Kurbakov A.I., Zvereva E.A. et al. // Dalton Trans. 2019. V. 45. No. 7. P. 17070.
- Kurbakov A.I., Korshunov A.N., Podchezertsev S.Y. et al. // Phys. Rev. B. 2017. V. 96. Art. No. 024417.
- Stratan M.I., Shukaev I.L., Vasilchikova T.M. et al. // New J. Chem. 2019. V. 43. P. 13545.
- Korshunov A., Safiulina I., Kurbakov A. // Phys. Stat. Sol. B. 2020. V. 257. Art. No. 1900232.
- Kurbakov A.I., Korshunov A.N., Podchezertsev S.Yu. et al. // J. Alloys Compounds. 2020. V. 820. Art. No. 153 354.
- Курбаков А.И., Коршунов А.Н., Пирогов А.Н. и др. // Кристаллография. 2021. Т. 66. № 2. С. 271; Kurbakov A.I., Korshunov A.N., Pirogov A.N. et al. // Crystallography Rep. 2021. V. 66. No. 2. P. 267.
- Fouet J.B., Sindzingre P., Lhuillier C. // Eur. Phys. J. B. 2001. V. 20. P. 241.
- Li P.H.Y., Bishop R.F., Farnell D.J.J., Campbell C.E. // Phys. Rev. B. 2012. V. 86. Art. No. 144404.
- Grundish N.S., Seymour I.D., Henkelman G., Goodenough J.B. // Chem. Mater. 2019. V. 31. P. 9379.
- Politaev V.V., Nalbandyan V.B., Petrenko A.A. et al. // J. Solid State Chem. 2010. V. 183. P. 684.
- Rodriguez-Carvajal J. // Phys. B. 1993. V. 55. P. 192.
- Izumi F., Momma K. // Solid State Phenom. 2007. V. 130. P. 15.
- Vasilchikova T., Vasiliev A., Evstigneeva M. et al. // Materials. 2022. V. 15. P. 2563.
- Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


