Non-resonant absorption of the X-band electromagnetic wave power in a narrow-gap PbS semiconductor at temperatures of 2.6–8 K in the range of magnetic fields 0–100 mT
- Autores: Ulanov V.A.1,2, Zainullin R.R.1, Sinitsyn A.M.1, Potapov A.A.1, Shustov V.A.2
- 
							Afiliações: 
							- Kazan State Power Engineering University
- Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”
 
- Edição: Volume 87, Nº 12 (2023)
- Páginas: 1773-1780
- Seção: Articles
- URL: https://rjeid.com/0367-6765/article/view/654539
- DOI: https://doi.org/10.31857/S0367676523703064
- EDN: https://elibrary.ru/QKBOVJ
- ID: 654539
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Studies of magnetically dependent effects of nonresonant absorption of electromagnetic wave energy in the resonator of the X-band EPR spectrometer related to the superconductivity of metallic lead inclusions and microscopic structural defects in crystals of narrow-band semiconductors PbS1 – x and PbS1 – x:Mn have been performed. It is shown that nanoscale lead particles present in polycrystalline material PbS0.96 with a high content of sulfur vacancies at temperatures of 2.6–8 K manifest themselves as superconductors of the 2nd kind and demonstrate high thermomagnetic stability. It was found that in a single-crystal sample PbS0.996 with a significantly lower concentration of sulfur vacancies under the influence of the electric component of the microwave field in the resonator of the ESR spectrometer, non-periodic bursts of microwave power absorption associated with avalanches of Abrikosov vortices and demonstrating the absence of thermomagnetic stability of superconducting regions associated with defects in the crystal structure of the sample PbS0.996 are observed.
Palavras-chave
Sobre autores
V. Ulanov
Kazan State Power Engineering University; Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”
							Autor responsável pela correspondência
							Email: ulvlad@inbox.ru
				                					                																			                												                								Russia, 420066, Kazan; Russia, 420029, Kazan						
R. Zainullin
Kazan State Power Engineering University
														Email: ulvlad@inbox.ru
				                					                																			                												                								Russia, 420066, Kazan						
A. Sinitsyn
Kazan State Power Engineering University
														Email: ulvlad@inbox.ru
				                					                																			                												                								Russia, 420066, Kazan						
A. Potapov
Kazan State Power Engineering University
														Email: ulvlad@inbox.ru
				                					                																			                												                								Russia, 420066, Kazan						
V. Shustov
Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”
														Email: ulvlad@inbox.ru
				                					                																			                												                								Russia, 420029, Kazan						
Bibliografia
- Chu Junhao, Sher Arden. Physics and properties of narrow gap semiconductors. Shpringer Science-Business Media: LLC. 2008. 605 p.
- Mukherjee S., Li D., Gautam A. et al. Lead salt thin film semiconductors for microelectronic applications. Kerala (India): Transworld Research Network 37/661, 2010. 88 p.
- Sizov F.F., Plyatsko S.V. // J. Crystal Growth. 1988. V. 92. P. 571.
- Дарчук С.Д., Дитл Т., Коровина Л.А. и др. // ФТП. 1998. Т. 32. № 7. С. 786; Darchuk S.D., Korovina L.A., Sizov F.F. et al. // Semiconductors. 1998. V. 32. No. 7. P. 700.
- Fogel N.Ya., Pokhila A.S., Bomze Yu.V. et al. // Phys. Rev. B. 2001. V. 86. P. 512.
- Юзефович О.И., Михайлов М.Ю., Бенгус С.В. и др. // Физ. низк. темп. 2008. Т. 34. № 12. С. 1249; Yuzephovich O.I., Mikhailov M.Yu., Bengus S.V. et al. // Low Temp. Phys. 2008. V. 34. No. 12. P. 985.
- Escorne M., Manger A., Tholence I.L. et al. // Phys. Rev. B. 1984. V. 29. No. 11. P. 6306.
- Уланов В.А., Зайнуллин Р.Р., Фазлижанов И.И., Житейцев Е.Р. // Тез. XXXVII сов. по физике низких температур (Казань, 2015). С. 328.
- Lutterotti L., Chateigner D., Ferrari S. Ricote J. // Thin Solid Films. 2004. V. 450. P. 34.
- Шмидт В.В. Введение в физику сверхпроводников. М.: МЦМНО, 2000. 400 с.
- Mironov S., Goldobin E., Koelle D. et al. // Phys. Rev. B. 2017. V. 96. Art. No. 214515.
- Altshuler E. // Rev. Mod. Phys. 2004. V. 76. P. 471.
- Зюзин А.Ю. // Письма в ЖЭТФ. 2022. Т. 116. С. 603; Zyuzin A.Yu. // JETP Lett. 2022. V. 116. P. 623.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




