Calculation of the number of conduction channels in a single-electron reservoir network on metal-organic framework polymers
- Autores: Pankratov S.A.1,2, Parshintsev А.А.1,2,3, Presnov D.E.1,2,4, Shorokhov V.V.1,2
- 
							Afiliações: 
							- Lomonosov Moscow State University, Physics Faculty
- Lomonosov Moscow State University, Quantum Technology Centre
- Bernardo O’Higgins University
- Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
 
- Edição: Volume 87, Nº 1 (2023)
- Páginas: 71-78
- Seção: Articles
- URL: https://rjeid.com/0367-6765/article/view/654505
- DOI: https://doi.org/10.31857/S0367676522700132
- EDN: https://elibrary.ru/JJOOAC
- ID: 654505
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Single-particle energy spectra of one-dimensional metal-organic framework chain’s fragments were obtained with the density functional theory method. An effective resistance of an organic part of the polymer, coulomb energy and effective capacitance of a charge center were calculated. The number of conductive channels in an experimentally studied reservoir network based on the observed polymer chains was estimated.
Sobre autores
S. Pankratov
Lomonosov Moscow State University, Physics Faculty; Lomonosov Moscow State University, Quantum Technology Centre
							Autor responsável pela correspondência
							Email: pankratov.sa18@physics.msu.ru
				                					                																			                												                								Russia, 119991, Moscow; Russia, 119991, Moscow						
А. Parshintsev
Lomonosov Moscow State University, Physics Faculty; Lomonosov Moscow State University, Quantum Technology Centre; Bernardo O’Higgins University
														Email: pankratov.sa18@physics.msu.ru
				                					                																			                												                								Russia, 119991, Moscow; Russia, 119991, Moscow; Chile, 8370993, Santiago						
D. Presnov
Lomonosov Moscow State University, Physics Faculty; Lomonosov Moscow State University, Quantum Technology Centre; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
														Email: pankratov.sa18@physics.msu.ru
				                					                																			                												                								Russia, 119991, Moscow; Russia, 119991, Moscow; Russia, 119991, Moscow						
V. Shorokhov
Lomonosov Moscow State University, Physics Faculty; Lomonosov Moscow State University, Quantum Technology Centre
														Email: pankratov.sa18@physics.msu.ru
				                					                																			                												                								Russia, 119991, Moscow; Russia, 119991, Moscow						
Bibliografia
- Likharev K.K. // Proc. IEEE. 1999. V. 87. No. 4. P. 606.
- Gubin S.P., Gulayev Y.V., Khomutov G.B. et al. // Nanotechnology. 2002. V. 13. No. 2. P. 185.
- Shorokhov V.V., Presnov D.E., Amitonov S.V. et al. // Nanoscale. 2017. V. 9. No. 2. P. 613.
- Bose S.K., Lawrence C.P., Liu Z. et al. // Nature Nanotechnol. 2015. V. 10. No. 12. P. 1048.
- Chen T., Gelder J., Ven B. et al. // Nature. 2020. V. 577. No. 7790. P. 341.
- Грибачев В. // Комп. технол. 2006. № 61. P. 100.
- Cheetham A.K., Rao C.N.R., Feller R.K. // Chem. Commun. 2006. No. 46. P. 4780.
- Beloglazkina E.K., Barskaya E.S., Majouga A.G. et al. // Mendeleev Commun. 2015. V. 2. No. 25. P. 148.
- Allendorf M.D., Schwartzberg A., Stavila V. et al. // Chem. Eur. J. 2011. V. 17. No. 41. P. 11372.
- Liang W., Shores M.P., Bockrath M. et al. // Nature. 2002. V. 417. No. 6890. P. 725.
- Морозова Е.К., Лялина А.М., Сапков И.В. и др. // Инфокомм. и радиоэлектрон. технол. 2019. Т. 2. № 2. С. 204.
- Urtizberea A., Natividad E. Alonso P.J. et al. // Adv. Funct. Mater. 2018. V. 28. No. 31. Art. No. 1801695.
- Zadrozny J.M., Gallagher A.T., Harris T.D. et al. // J. Amer. Chem. Soc. 2017. V. 139. No. 20. P. 7089.
- Yamabayashi T., Atzori M., Tesi L. et al. // J. Amer. Chem. Soc. 2018. V. 140. No. 38. Art. No. 12090.
- Degen C.L., Reinhard F., Cappellaro P. // Rev. Mod. Phys. 2017. V. 89. No. 3. Art. No. 035002.
- Doty F.P., Bauer C.A., Skulan A.J. et al. // Adv. Mater. 2009. V. 21. No. 1. P. 95.
- Wang Y., Liu X., Li X. et al. // J. Amer. Chem. Soc. 2019. V. 141. No. 20. P. 8030.
- Fuller C.W., Padayatti P.S., Abderrahim H. et al. // Proc. National Acad. Sci. USA. 2022. V. 119. No. 5. Art. No. e2112812119.
- Шорохов В.В., Солдатов Е.С., Губин С.П. // Радиотехн. и электрон. 2011. Т. 56. № 3. С. 352.
- Pankratov S.A., Bozhev I.V., Shorokhov V.V. et al. // Proc. ICMNE-2021 (Moscow, 2021). Art. No. O1-03-13.
- Landauer R. // IBM J. Res. Dev. 1957. V. 1. No. 3. P. 223.
- Burstein E., Lundqvist S. Tunneling phenomena in solids. N.Y.: Plenum Press, 1967. P. 427.
- Apra E., Bylaska E.J., Jong W.A. et al. // J. Chem. Phys. 2020. V. 152. No. 18. Art. No. 184102.
- Politzer P., Abu-Awwad F. // Theor. Chem. Acc. 1998. V. 99. No. 2. P. 83.
- Averin D.V., Likharev K.K. // J. Low Temp. Phys. 1986. V. 62. No. 3. P. 345.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



