T-15MD tokamak microwave interferometer for measuring the average electron density of plasma

封面

如何引用文章

全文:

详细

The distinctive features of the T-15MD tokamak microwave interferometer for measuring linearly integrated electron density, as well as the system for processing and recording its signals, are presented. The phase stability of microwave interferometer signals is analyzed. The results of measurements with a microwave interferometer during the first experimental campaign of the T-15MD tokamak are presented. The phase values were extracted by using an analog phase meter and post-processing of digitized microwave interferometer signals: an intermediate frequency signal and a local oscillator signal. It is shown that the results of the plasma density calculation by these two methods coincide.

作者简介

A. Drozd

National Research Centre «Kurchatov Institute»; National Research Nuclear University «Moscow Engineering Physics Institute»

编辑信件的主要联系方式.
Email: Drozd_AS@nrcki.ru
俄罗斯联邦, Moscow, 123182; Moscow, 115409

D. Sergeev

National Research Centre «Kurchatov Institute»

Email: Sergeev_DS@nrcki.ru
俄罗斯联邦, Moscow, 123182

R. Begishev

National Research Centre «Kurchatov Institute»; Moscow Institute of Physics and Technology

Email: Begishev_RA@nrcki.ru
俄罗斯联邦, Moscow, 123182; Dolgoprudny, Moscow oblast, 141701

G. Igon’kina

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
俄罗斯联邦, Moscow, 123182

M. Sokolov

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
俄罗斯联邦, Moscow, 123182

N. Korshunov

National Research Centre «Kurchatov Institute»; Moscow Institute of Physics and Technology

Email: Begishev_RA@nrcki.ru
俄罗斯联邦, Moscow, 123182; Dolgoprudny, Moscow oblast, 141701

E. Khairutdinov

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
俄罗斯联邦, Moscow, 123182

T. Myalton

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
俄罗斯联邦, Moscow, 123182

参考

  1. Veron D. // Infrared and millimeter waves. 1979. Т. 2. С. 67.
  2. Shi. P., Shi. Z., Chen W., Zhong W., Yang Z., Jiang M., Zhang B., Li Y., Yu L., Liu Z. // Plasma Sci. Technol. 2016. Т. 18. № 7. С. 708. doi: 10.1088/1009-0630/18/7/02
  3. Varavin M., Zajac. J, Zacek F., Nanobashvili S., Ermak G.P., Varavin A.V., Vasilev A.S., Stumbra M., Vetoshko A., Fateev A.V., Shevchenko V.V. // Telecommunications and Radio Engineering. 2014. Т. 73. №. 10. doi: 10.1615/TelecomRadEng.v73.i10.80
  4. Сергеев Д.С., Неруш М.Н. // ВАНТ. Сер. Термоядерный синтез. 2020. Т. 43. Вып. 2. С. 49. doi: 10.21517/0202-3822-2020-43-2-49-56
  5. Bornatici M. // Plasma Physics. 1982. Т. 24. №. 6. С. 629. doi: 10.1088/0032-1028/24/6/005
  6. Хвостенко П.П., Анашкин И.О., Бондарчук Э.Н., Инютин Н.В., Крылов В.А., Левин И.В., Минеев А.Б., Соколов М.М. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. Вып. 1. С. 15. doi: 10.21517/0202-3822-2019-42-1-15-38
  7. Сергеев Д.С., Дрозд А.С., Кириллов А.С., Диас Михайлова Д.Е. // ВАНТ. Сер. Термоядерный синтез. 2022. Т. 45. Вып. 3, С. 23. doi: 10.21517/0202-3822-2022-45-3-23-28
  8. Drozd A., Sergeev D. // Rev. Sci. Instrum. 2022. Т. 93. №. 6. С. 063501. doi: 10.1063/5.0087847
  9. Hossack, A.C., Morgan, K.D., Hansen, C.J., & Sutherland, D.A. // Rev. Sci. Instrum. 2022. Т. 93. №9 С. 093501. doi: 10.1063/5.0097459
  10. Smith R.J. and TAE Team // Rev. Sci. Instrum. 2018. Т. 89. Вып. 10, С. 23. doi: 10.1063/1.5037332

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024