T-15MD tokamak microwave interferometer for measuring the average electron density of plasma

Capa

Citar

Texto integral

Resumo

The distinctive features of the T-15MD tokamak microwave interferometer for measuring linearly integrated electron density, as well as the system for processing and recording its signals, are presented. The phase stability of microwave interferometer signals is analyzed. The results of measurements with a microwave interferometer during the first experimental campaign of the T-15MD tokamak are presented. The phase values were extracted by using an analog phase meter and post-processing of digitized microwave interferometer signals: an intermediate frequency signal and a local oscillator signal. It is shown that the results of the plasma density calculation by these two methods coincide.

Sobre autores

A. Drozd

National Research Centre «Kurchatov Institute»; National Research Nuclear University «Moscow Engineering Physics Institute»

Autor responsável pela correspondência
Email: Drozd_AS@nrcki.ru
Rússia, Moscow, 123182; Moscow, 115409

D. Sergeev

National Research Centre «Kurchatov Institute»

Email: Sergeev_DS@nrcki.ru
Rússia, Moscow, 123182

R. Begishev

National Research Centre «Kurchatov Institute»; Moscow Institute of Physics and Technology

Email: Begishev_RA@nrcki.ru
Rússia, Moscow, 123182; Dolgoprudny, Moscow oblast, 141701

G. Igon’kina

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
Rússia, Moscow, 123182

M. Sokolov

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
Rússia, Moscow, 123182

N. Korshunov

National Research Centre «Kurchatov Institute»; Moscow Institute of Physics and Technology

Email: Begishev_RA@nrcki.ru
Rússia, Moscow, 123182; Dolgoprudny, Moscow oblast, 141701

E. Khairutdinov

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
Rússia, Moscow, 123182

T. Myalton

National Research Centre «Kurchatov Institute»

Email: Begishev_RA@nrcki.ru
Rússia, Moscow, 123182

Bibliografia

  1. Veron D. // Infrared and millimeter waves. 1979. Т. 2. С. 67.
  2. Shi. P., Shi. Z., Chen W., Zhong W., Yang Z., Jiang M., Zhang B., Li Y., Yu L., Liu Z. // Plasma Sci. Technol. 2016. Т. 18. № 7. С. 708. doi: 10.1088/1009-0630/18/7/02
  3. Varavin M., Zajac. J, Zacek F., Nanobashvili S., Ermak G.P., Varavin A.V., Vasilev A.S., Stumbra M., Vetoshko A., Fateev A.V., Shevchenko V.V. // Telecommunications and Radio Engineering. 2014. Т. 73. №. 10. doi: 10.1615/TelecomRadEng.v73.i10.80
  4. Сергеев Д.С., Неруш М.Н. // ВАНТ. Сер. Термоядерный синтез. 2020. Т. 43. Вып. 2. С. 49. doi: 10.21517/0202-3822-2020-43-2-49-56
  5. Bornatici M. // Plasma Physics. 1982. Т. 24. №. 6. С. 629. doi: 10.1088/0032-1028/24/6/005
  6. Хвостенко П.П., Анашкин И.О., Бондарчук Э.Н., Инютин Н.В., Крылов В.А., Левин И.В., Минеев А.Б., Соколов М.М. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. Вып. 1. С. 15. doi: 10.21517/0202-3822-2019-42-1-15-38
  7. Сергеев Д.С., Дрозд А.С., Кириллов А.С., Диас Михайлова Д.Е. // ВАНТ. Сер. Термоядерный синтез. 2022. Т. 45. Вып. 3, С. 23. doi: 10.21517/0202-3822-2022-45-3-23-28
  8. Drozd A., Sergeev D. // Rev. Sci. Instrum. 2022. Т. 93. №. 6. С. 063501. doi: 10.1063/5.0087847
  9. Hossack, A.C., Morgan, K.D., Hansen, C.J., & Sutherland, D.A. // Rev. Sci. Instrum. 2022. Т. 93. №9 С. 093501. doi: 10.1063/5.0097459
  10. Smith R.J. and TAE Team // Rev. Sci. Instrum. 2018. Т. 89. Вып. 10, С. 23. doi: 10.1063/1.5037332

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024