Numerical simulation of the main stage of a lightning
- Authors: Bocharov A.N.1, Mareev E.A.2, Popov N.A.1,3
-
Affiliations:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Institute of Applied Physics, Russian Academy of Sciences
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Issue: Vol 50, No 3 (2024)
- Pages: 340-348
- Section: LOW TEMPERATURE PLASMA
- URL: https://rjeid.com/0367-2921/article/view/668875
- DOI: https://doi.org/10.31857/S0367292124030086
- EDN: https://elibrary.ru/RFUVHE
- ID: 668875
Cite item
Full Text
Abstract
We present a numerical model of the main stage of a lightning discharge. Within the framework of the developed model, evolution of parameters of the current channel upon the return stroke (the lightning main stage) is described by the system of equations governing conservation of mass, momentum, total energy, along with the transmission-line equations for determining the electric potential and the total current in each channel cross section. The main characteristics of lightning at the stage of the return stroke detectable experimentally, such as gas heating in the channel to temperatures in the range of 10–40 kK, the fundamental possibility of propagation of the potential-gradient wave at a speed varying from several hundredth to several tenths of the speed of light, and the possibility of the return-stroke wave propagating a relatively long distance without substantial attenuation, are demonstrated numerically. The conclusion that the developed physical and numerical model of the lightning discharge describes physical processes that occur under real conditions qualitatively correctly can be drawn based on the results on simulation of lightning discharges of various intensity.
About the authors
A. N. Bocharov
Joint Institute for High Temperatures, Russian Academy of Sciences
Author for correspondence.
Email: bocharov@ihed.ras.ru
Russian Federation, Moscow
E. A. Mareev
Institute of Applied Physics, Russian Academy of Sciences
Email: bocharov@ihed.ras.ru
Russian Federation, Nizhny Novgorod
N. A. Popov
Joint Institute for High Temperatures, Russian Academy of Sciences; Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: bocharov@ihed.ras.ru
Russian Federation, Moscow; Moscow
References
- Базелян Э. М., Райзер Ю. П. Физика молнии и молниезащиты. М.: Физматлит, 2001. 320 с.
- Rakov V., Uman M. Lightning: physics and effects. Cambridge University Press, 2003.
- Paxton A. H., Gardner R. L., Baker L. // Phys. Fluids. 1986. V. 29. Р. 2736.
- Александров Н. Л., Базелян Э. М., Шнейдер М. Н. // Физика плазмы. 2000. Т. 26. С. 952.
- Plooster M. N. // Phys. Fluids. 1971. V. 14. Р. 2111.
- Ripoll J.-F., Zinn J., Jeffery C. A., Colestock P. L. // J. Geophys. Res. Atmos. 2014. V. 119. Р. 9196.
- Ripoll J.-F., Zinn J., Colestock P. L., Jeffery C. A. // J. Geophys. Res. Atmos. 2014. V. 119. Р. 9218.
- Bocharov A. N., Mareev E. A., Popov N. A. // J. Phys. D: Appl. Phys. 2022. V. 55. Р. 115204.
- Robledo-Martinez A., Sobral H., Ruiz-Meza A. // J. Phys. D: Appl. Phys. 2008. V. 41. Р. 175207.
- Sousa Martins R., Chemartin L., Zaepffel C., Lalande Ph., Soufiani A. // J. Phys. D: Appl. Phys. 2016. V. 49. Р. 185204.
- Sousa Martins R., Zaepffel C., Chemartin L., Lalande Ph., Soufiani A. // J. Phys. D: Appl. Phys. 2016. V. 49. Р. 415205.
- Sousa Martins R., Zaepffel C., Chemartin L., Lalande Ph., Lago F. // J. Phys. D: Appl. Phys. 2019. V. 52. Р. 185203.
- Василяк Л. М., Костюченко С. В., Кудрявцев Н. Н., Филюгин И. В. // УФН. 1994. Т. 164. С. 261.
- Попов Н. А. // Физика плазмы. 2003. T. 29. C. 754.
- Александров Н. Л., Базелян Э. М., Кончаков А. М. // Физика плазмы. 2001. Т. 27. С. 928.
- Битюрин В. А., Бочаров А. Н., Попов Н. А. // Изв. РАН. МЖГ. 2008. № 4. С. 161.
- Bityurin V. A., Bocharov A. N. // J. Phys. D: Appl. Phys. 2018. V. 51. Р. 264001. https://doi.org/10.1088/1361-6463/aac566
- Bityurin V. A., Bocharov A. N., Popov N. A. // J. Phys. D: Appl. Phys. 2019. V. 52. Р. 354001. https://doi.org/10.1088/1361-6463/ab2181
- D’Angola A., Colonna G., Gorse C., Capitelli M. // European Phys. J. D. 2008. V. 46. Р. 129. https://doi.org/10.1140/epjd/e2007-00305-4
- Авилова И. В., Биберман Л. М., Воробьев В. С., Замалин В. М., Кобзев Г. А., Лагарьков А. Н., Мнацаканян А. Х., Норман Г. Э. Оптические свойства горячего воздуха. М.: Наука, 1970. 320 с.
- Kobzev G. A., Nuzhnyi V. A. // IVTAN Revs. 1989. V. 3. Р. 57.
- Bocharov A. N., Mareev E. A., Popov N. A. // J. Phys.: Confer. Ser. 2021. V. 2100. Р. 012031. https://doi.org/10.1088/1742-6596/2100/1/012031
- Базелян Э. М., Чичинский М. И. // Физика плазмы. 2009. Т. 35. С. 861.
- Bogatov N. A., Syssoev V. S., Sukharevsky D. I., Orlov A. I., Rakov V. A., Mareev E. A. // J. Geophys. Res.: Atmospheres. 2022. V. 127. Р. e2021JD035870.
Supplementary files
