Потенциал применения параметра Blue Intensity для оценки климатического отклика радиального прироста деревьев на полуострове Крым
- Авторы: Комарова А.В.1,2, Кукарских В.В.1,3, Бубнов М.О.1, Дэви Н.М.1,4
- 
							Учреждения: 
							- Институт экологии растений и животных УрО РАН
- Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
- Сибирский федеральный университет
- Казанский федеральный университет
 
- Выпуск: № 5 (2023)
- Страницы: 375-386
- Раздел: Статьи
- URL: https://rjeid.com/0367-0597/article/view/671748
- DOI: https://doi.org/10.31857/S0367059723050062
- EDN: https://elibrary.ru/WWGFFU
- ID: 671748
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Представлены результаты оценки климатического сигнала, содержащегося в ширине годичных колец, и показателя оптической плотности древесины (Blue Intensity) родственных видов сосен – черной (Pinus nigra Arnold) и пицундской (Pinus brutia Ten), произрастающих на южном побережье полуострова Крым. Показано влияние накопительного эффекта недостатка влаги на радиальный рост и процессы лигнификации поздней древесины изученных видов хвойных. Выявлена специфическая реакция P. nigra в высокогорных районах на условия продолжительной засухи. Продемонстрирована перспективность применения показателя Blue Intensity для дендроклиматических исследований на территории полуострова Крым.
Ключевые слова
Об авторах
А. В. Комарова
Институт экологии растений и животных УрО РАН; Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
														Email: nadya@ipae.uran.ru
				                					                																			                												                								Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3; Россия, 620002, Екатеринбург, ул. Мира, 19						
В. В. Кукарских
Институт экологии растений и животных УрО РАН; Сибирский федеральный университет
														Email: nadya@ipae.uran.ru
				                					                																			                												                								Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3; Россия, 660041, Красноярск, просп. Свободный, 79						
М. О. Бубнов
Институт экологии растений и животных УрО РАН
														Email: nadya@ipae.uran.ru
				                					                																			                												                								Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3						
Н. М. Дэви
Институт экологии растений и животных УрО РАН; Казанский федеральный университет
							Автор, ответственный за переписку.
							Email: nadya@ipae.uran.ru
				                					                																			                												                								Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3; Россия, 420008, Казань, ул. Кремлевская, 18						
Список литературы
- Speer J.H. Fundamentals of tree-ring research. Arizona: University of Arizona Press, 2012. 521 p.
- Schweingruber F.H. Tree Rings // Tree Rings. Dordrecht, Boston, London: Kluwer Academic Publishers, 1988. 276 p. https://doi.org/10.1007/978-94-009-1273-1
- Saurer M. The influence of climate on the oxygen isotopes in tree rings // Isotopes in Environmental and Health Studies. 2010. V. 39. № 2. P. 105–112. https://doi.org/10.1080/1025601031000108633
- Sidorova O.V., Saurer M., Myglan V.S. et al. A multi-proxy approach for revealing recent climatic changes in the Russian Altai // Climate Dynamics. 2012. V. 38. № 1–2. P. 175–188. https://doi.org/10.1007/S00382-010-0989-6
- Loader N.J., McCarroll D., Gagen M. et al. Extracting climatic information from stable isotopes in tree rings // Terrestrial Ecology. 2007. V. 1. P. 25–48. https://doi.org/10.1016/S1936-7961(07)01003-2
- Björklund J., Von Arx G., Nievergelt D. et al. Scientific merits and analytical challenges of tree-ring densitometry // Reviews of Geophysics. 2019. V. 15. Art. 16. https://doi.org/10.1029/2019RG000642
- Kirdyanov A.V., Vaganov E.A., Hughes M.K. Separating the climatic signal from tree-ring width and maximum latewood density records // Trees-Structure and Function. 2007. V. 21. № 1. P. 37–44. https://doi.org/10.1007/S00468-006-0094-Y
- McCarroll D., Pettigrew E., Luckman A. et al. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings // Arctic, Antarctic, and Alpine Research. 2002. V. 34. № 4. P. 450–453. https://doi.org/10.1080/15230430.2002.12003516
- Campbell R., McCarroll D., Loader N.J. et al. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy // Holocene. 2007. V. 17. № 6. P. 821–828. https://doi.org/10.1177/0959683607080523
- Rydval M., Larsson L.A., McGlynn L. et al. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland // Dendrochronologia. 2014. V. 32. № 3. P. 191–204. https://doi.org/10.1016/j.dendro.2014.04.003
- Fukazawa K. Ultraviolet microscopy. Springer, Berlin, Heidelberg, 1992. P. 110–121. https://doi.org/10.1007/978-3-642-74065-7_8
- Blake S.A.P., Palmer J.G., Björklund J. et al. Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Iintensity (BI) // Dendrochronologia. 2020. V. 60. Art. 125664. https://doi.org/10.1016/j.dendro.2020.125664
- Tsvetanov N., Dolgova E., Panayotov M. First measurements of Blue intensity from Pinus peuce and Pinus heldreichii tree rings and potential for climate reconstructions // Dendrochronologia. 2020. V. 60. Art. 125681. https://doi.org/10.1016/J.DENDRO.2020.125681
- Vincent J.F.V. From cellulose to cell // Journal of Experimental Biology. 1999. V. 202. № 23. P. 3263–3268. https://doi.org/10.1242/jeb.202.23.3263a
- Yan C., Yin M., Zhang N. et al. Stone cell distribution and lignin structure in various pear varieties // Scientia Horticulturae. 2014. V. 174. № 1. P. 142–150. https://doi.org/10.1016/j.scienta.2014.05.018
- Björklund J.A., Gunnarson B.E., Seftigen K. et al. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information // Climate of the Past. 2014. V. 10. № 2. P. 877–885. https://doi.org/10.5194/cp-10-877-2014
- Wilson R., Rao R., Rydval M. et al. Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada // Holocene. 2014. V. 24. № 11. P. 1428–1438. https://doi.org/10.1177/0959683614544051
- Campbell R., McCarroll D., Robertson I. et al. Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy // Tree-Ring Research. 2011. V. 67. № 2. P. 127–134. https://doi.org/10.3959/2010-13.1
- Gindl W., Grabner M., Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width // Trees-Structure and Function. 2000. V. 14. № 7. P. 409–414. https://doi.org/10.1007/s004680000057
- Björklund J., Gunnarson B.E., Seftigen K. et al. Using adjusted Blue intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia // Holocene. 2015. V. 25. № 3. P. 547–556. https://doi.org/10.1177/0959683614562434
- Dolgova E. June-september temperature reconstruction in the Northern Caucasus based on Blue intensity data // Dendrochronologia. 2016. V. 39. P. 17–23. https://doi.org/10.1016/J.DENDRO.2020.125681
- Rydval M., Loader N.J., Gunnarson B.E. et al. Reconstructing 800 years of summer temperatures in Scotland from tree rings // Climate Dynamics. 2017. V. 49. № 9–10. P. 2951–2974. https://doi.org/10.1007/s00382-016-3478-8
- Wilson R., D’Arrigo R., Andreu-Hayles L. et al. Experiments based on Blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska // Climate of the Past. 2017. V. 13. № 8. P. 1007–1022. https://doi.org/10.5194/cp-13-1007-2017
- Wilson R., Anchukaitis K., Andreu-Hayles L. et al. Improved dendroclimatic calibration using Blue intensity in the southern Yukon // Holocene. 2019. V. 29. № 11. P. 1817–1830. https://doi.org/10.1177/0959683619862037
- Seftigen K., Fuentes M., Ljungqvist F.C. et al. Using Blue intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability // Climate Dynamics. 2020. V. 55. № 3–4. P. 579–594. https://doi.org/10.1007/s00382-020-05287-2
- Vyukhina A.A., Gurskaya M.A. Dendroclimatic potential of Blue intensity-based chronologies of northern Fennoscandia Scots pine // Journal of Siberian Federal University – Biology. 2022. V. 15. № 2. P. 244–263. https://doi.org/10.17516/1997-1389-0385
- Buckley B.M., Hansen K.G., Griffin K.L. et al. Blue Intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective // Dendrochronologia. 2018. V. 50. P. 10–22. https://doi.org/10.1016/j.dendro.2018.04.003
- Wilson R., Allen K., Baker P. et al. Evaluating the dendroclimatological potential of Blue intensity on multiple conifer species from Tasmania and New Zealand // Biogeosciences. 2021. V. 18. № 24. P. 6393–6421. https://doi.org/10.5194/bg-18-6393-2021
- Reid E., Wilson R. Delta Blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees // Dendrochronologia. 2020. V. 61. P. 125706. https://doi.org/10.1016/j.dendro.2020.125706
- Akhmetzyanov L., Sánchez-Salguero R., García-González I. et al. Blue is the fashion in Mediterranean pines: New drought signals from tree-ring density in southern Europe // Science of the Total Environment. 2023. V. 856. P. 159291. https://doi.org/10.1016/j.scitotenv.2022.159291
- Gernandt D.S., Geada López G., Ortiz García S. et al. Phylogeny and classification of Pinus // Taxon. 2005. V. 54. № 1. P. 29–42. https://doi.org/10.2307/25065300
- Plugatar U.V. Forests of the Crimea. Yalta (in Russian): GBU RK “NBS-NTS”, 2015. 385 p.
- Fady B., Semerci H., Vendramin G.G. EUFORGEN Technical guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia) // Rome: International Plant Genetic Resources Institute, 2003. 6 p.
- Isajev V., Fady B., Semerci H. et al. EUFORGEN Technical guidelines for genetic conservation and use for European black pine (Pinus nigra) // Rome: International Plant Genetic Resources Institute, 2003. 6 p.
- Koval I. Climatic signal in earlywood, latewood and total ring width of crimean pine (Pinus nigra subsp. pallasiana) from Crimean Mountains, Ukraine // Baltic Forestry. 2013. V. 19. № 2. P. 245–251.
- Solomina O., Davi N., D’Arrigo R. et al. Tree-ring reconstruction of Crimean drought and lake chronology correction // Geophysical Research Letters. 2005. V. 32. № 19. P. 1–4. https://doi.org/10.1029/2005GL023335
- Kukarskih V.V., Devi N.M., Surkov A.Y. et al. Climatic responses of Pinus brutia along the Black Sea coast of Crimea and the Caucasus // Dendrochronologia. 2020. V. 64. Art. 125763. https://doi.org/10.1016/j.dendro.2020.125763
- Сидоренко А.В. Геология СССР, Т. VIII. Крым. Геологическое описание. М.: Недра, 1969. 576 с.
- Подгородецкий П.Д. Крым. Природа. Симферополь: Таврия, 1988. 192 с.
- Caudullo G., Welk E., San-Miguel-Ayanz J. Chorological maps for the main European woody species // Data in Brief. 2017. V. 12. P. 662–666. https://doi.org/10.1016/j.dib.2017.05.007
- Ваганов Е.А., Шиятов С.Г., Мазепа В.С. Дендроклиматические исследования в Урало-Сибирской Субарктике. Новосибирск: СО РАН, 1996. 246 с.
- Stokes M., Smiley T. An introduction to tree-ring dating. Chicago, IL: University of Chicago Press, 1996. 73 p.
- Maxwell R.S., Larsson L.A. Measuring tree-ring widths using the CooRecorder software application // Dendrochronologia. 2021. V. 67. P. 125841. https://doi.org/10.1016/J.DENDRO.2021.125841
- Rinn F. Tsap V 3.6 Reference manual: computer program for tree-ring analysis and presentation. Heidelberg, Germany: Bierhelderweg 20, D-69126, 1996. 263 p.
- Grissino-Mayer H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA // Tree-Ring Research. 2001. V. 57. № 2. P. 205–221.
- Cook E.R., Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies // Tree-Ring Bulletin. 1981. V. 41. P. 45–53.
- Bunn A.G. A dendrochronology program library in R (dplR) // Dendrochronologia. 2008. V. 26. № 2. P. 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
- R Core Team. R: A Language and Environment for Statistical Computing. 2022.
- Zang C., Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relationships // Ecography. 2015. V. 38. № 4. P. 431–436. https://doi.org/10.1111/ecog.01335
- Vicente-Serrano S.M., Beguería S., López-Moreno J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index // Journal of Climate. 2010. V. 23. № 7. P. 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
- Sánchez-Salguero R., Camarero J.J., Hevia A. et al. What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? // Agricultural and Forest Meteorology. 2015. V. 206. P. 151–162. https://doi.org/10.1016/j.agrformet.2015.03.004
- Kukarskih V. V., Devi N.M., Bubnov M.O. et al. Radial growth of Scots pine in urban and rural populations of Ekaterinburg megalopolis // Dendrochronologia. 2022. V. 74. Art. 125974. https://doi.org/10.1016/J.DENDRO.2022.125974
- Janssen E., Kint V., Bontemps J.D. et al. Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean // Forest Ecology and Management. 2018. V. 412. P. 21–28. https://doi.org/10.1016/J.FORECO.2018.01.047
- Silkin P.P., Kirdyanov A.V. The relationship between variability of cell wall mass of earlywood and latewood tracheids in larch tree-rings, the rate of tree-ring growth and climatic changes // Holzforschung. 2003. V. 57. № 1. P. 1–7. https://doi.org/10.1515/HF.2003.001
- Fonti P., Bryukhanova M.V., Myglan V.S. et al. Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay // Americ. J. of Botany. 2013. V. 100. № 7. P. 1332–1343. https://doi.org/10.3732/AJB.1200484
- Eilmann B., Zweifel R., Buchmann N. et al. Drought alters timing, quantity, and quality of wood formation in Scots pine // Journal of Experimental Botany. 2011. V. 62. № 8. P. 2763–2771. https://doi.org/10.1093/jxb/erq443
- Eilmann B., Buchmann N., Siegwolf R. et al. Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C // Plant, Cell and Environment. 2010. V. 33. № 8. P. 1351–1360. https://doi.org/10.1111/j.1365-3040.2010.02153.x
- López R., Cano F.J., Rodríguez-Calcerrada J. et al. Tree-ring density and carbon isotope composition are early-warning signals of drought-induced mortality in the drought tolerant Canary Island pine // Agricultural and Forest Meteorology. 2021. V. 310. Art. 108634. https://doi.org/10.1016/j.agrformet.2021.108634
- Li X., Xi B., Wu X. et al. Unlocking drought-induced tree mortality: physiological mechanisms to modeling // Frontiers in Plant Science. 2022. V. 13. Art. 822. https://doi.org/10.3389/fpls.2022.835921
- Pompa-García M., Hevia A., Camarero J.J. Minimum and maximum wood density as proxies of water availability in two Mexican pine species coexisting in a seasonally dry area // Trees-Structure and Function. 2021. V. 35. № 2. P. 597–607. https://doi.org/10.1007/s00468-020-02062-y
- Camarero J.J., Hevia A. Links between climate, drought and minimum wood density in conifers // IAWA Journal. 2020. V. 41. № 2. P. 236–255. https://doi.org/10.1163/22941932-bja10005
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 





