Алкоголь-индуцированная активация системы хемокинов и развитие нейровоспаления

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Хемокины являются иммунорегуляторными белками с плейотропными функциями, участвующими в процессах нейромодуляции, нейрогенезе и нейротрансмиссии. Действие хемокинов на ЦНС играет важную роль в модуляции различных состояний, которые могут иметь негативные последствия для функций ЦНС, включая развитие расстройств, связанных с употреблением алкоголя. В данном обзоре мы проанализировали имеющиеся данные литературы, посвященные проблеме участия хемокинов в патогенезе, формировании клинической картины и ремиссии алкогольной зависимости как на животных моделях, так и при исследовании пациентов с алкоголизмом. Представленные данные подтверждают гипотезу о том, что индуцированная алкоголем выработка хемокинов может модулировать процессы хронического нейровоспаления. Таким образом, обобщенные и представленные в настоящем обзоре данные посвящены актуальному направлению исследований в области психиатрии, которые будут востребованы как учеными, так и специалистами клинического направления.

Полный текст

Доступ закрыт

Об авторах

Е. В. Михалицкая

Томский национальный исследовательский медицинский центр РАН

Автор, ответственный за переписку.
Email: Uzen63@mail.ru
Россия, 634014, Томск

Н. М. Вялова

Томский национальный исследовательский медицинский центр РАН

Email: Uzen63@mail.ru
Россия, 634014, Томск

Н. А. Бохан

Томский национальный исследовательский медицинский центр РАН

Email: Uzen63@mail.ru
Россия, 634014, Томск

С. А. Иванова

Томский национальный исследовательский медицинский центр РАН

Email: Uzen63@mail.ru
Россия, 634014, Томск

Список литературы

  1. Teixeira, A. L., Gama, C. S., Rocha, N. P., and Teixeira, M. M. (2018) Revisiting the role of eotaxin-1/CCL11 in psychiatric disorders, Front. Psychiatry, 9, https://doi.org/10.3389/fpsyt.2018.00241.
  2. Parsadaniantz, S. M., Rivat, C., Rostène, W., and Goazigo, A. R.-L. (2015) Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat. Rev. Neurosci., 16, 69-78, https://doi.org/10.1038/nrn3858.
  3. Rostène, W., Kitabgi, P., and Parsadaniantz, S. M. (2007) Chemokines: a new class of neuromodulator? Nat. Rev. Neurosci., 8, 895-903, https://doi.org/10.1038/nrn2255.
  4. Ahearn, O. C., Watson, M. N., and Rawls, S. M. (2021) Chemokines, cytokines and substance use disorders, Drug Alcohol Depend., 220, 108511, https://doi.org/10.1016/j.drugalcdep.2021.108511.
  5. Bachtell, R. K., Jones, J. D., Heinzerling, K. G., Beardsley, P. M., and Comer, S. D. (2017) Glial and neuroinflammatory targets for treating substance use disorders, Drug Alcohol Depend., 180, 156-170, https://doi.org/10.1016/ j.drugalcdep.2017.08.003.
  6. Ermakov, E. A., Mednova, I. A., Boiko, A. S., Buneva, V. N., and Ivanova, S. A. (2023) Chemokine dysregulation and neuroinflammation in schizophrenia: a systematic review, Int. J. Mol. Sci., 24, 2215, https://doi.org/10.3390/ijms24032215.
  7. Coller, J. K., and Hutchinson, M. R. (2012) Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence, Pharmacol. Ther., 134, 219-245, https://doi.org/10.1016/j.pharmthera.2012.01.008.
  8. Stuart, M. J., Singhal, G., and Baune, B. T. (2015) Systematic review of the neurobiological relevance of chemokines to psychiatric disorders, Front. Cell. Neurosci., 9, 357, https://doi.org/10.3389/fncel.2015.00357.
  9. Salim, S., Chugh, G., and Asghar, M. (2012) Inflammation in anxiety, Adv. Protein Chem. Struct. Biol., 88, 1-25, https://doi.org/10.1016/B978-0-12-398314-5.00001-5.
  10. Huber, A. K., Giles, D. A., Segal, B. M., and Irani, D. N. (2018) An emerging role for eotaxins in neurodegenerative disease, Clin. Immunol., 189, 29-33, https://doi.org/10.1016/j.clim.2016.09.010.
  11. Cui, L.-Y., Chu, S.-F., and Chen, N.-H. (2020) The role of chemokines and chemokine receptors in multiple sclerosis, Int. Immunopharmacol., 83, 106314, https://doi.org/10.1016/j.intimp.2020.106314.
  12. Westin, K., Buchhave, P., Nielsen, H., Minthon, L., Janciauskiene, S., and Hansson, O. (2012) CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease, PLoS One, 7, e30525, https://doi.org/10.1371/journal.pone.0030525.
  13. Bettcher, B. M., Fitch, R., Wynn, M. J., Lalli, M. A., Elofson, J., Jastrzab, L., Mitic, L., Miller, Z. A., Rabinovici, G. D., Miller, B. L., Kao, A. W., Kosik, K. S., and Kramer, J. H. (2016) MCP‐1 and eotaxin‐1 selectively and negatively associate with memory in MCI and Alzheimer’s disease dementia phenotypes, Alzheimers Dement., 3, 91-97, https://doi.org/10.1016/j.dadm.2016.05.004.
  14. Araos, P., Pedraz, M., Serrano, A., Lucena, M., Barrios, V., García‐Marchena, N., Campos‐Cloute, R., Ruiz, J. J., Romero, P., Suárez, J., Baixeras, E., de la Torre, R., Montesinos, J., Guerri, C., Rodríguez‐Arias, M., Miñarro, J., Martínez‐Riera, R., Torrens, M., Chowen, J. A., Argente, J., Mason, B. J., et al. (2015) Plasma profile of pro‐inflammatory cytokines and chemokines in cocaine users under outpatient treatment: influence of cocaine symptom severity and psychiatric co‐morbidity, Addict. Biol., 20, 756-772, https://doi.org/10.1111/adb.12156.
  15. Magalhaes, P. V. S., Jansen, K., Stertz, L., Ferrari, P., Pinheiro, R. T., da Silva, R. A., and Kapczinski, F. (2014) Peripheral eotaxin-1 (CCL11) levels and mood disorder diagnosis in a population-based sample of young adults, J. Psychiatric Res., 48, 13-15, https://doi.org/10.1016/j.jpsychires.2013.10.007.
  16. Ogłodek, E. A., Szota, A., Just, M. J., Moś, D., and Araszkiewicz, A. (2014) Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression, Pharmacol. Rep., 66, 920-926, https://doi.org/10.1016/j.pharep.2014.06.001.
  17. Simon, N. M., McNamara, K., Chow, C. W., Maser, R. S., Papakostas, G. I., Pollack, M. H., Nierenberg, A. A., Fava, M., and Wong, K. K. (2008) A detailed examination of cytokine abnormalities in major depressive disorder, Eur. Neuropsychopharmacol., 18, 230-233, https://doi.org/10.1016/j.euroneuro.2007.06.004.
  18. Grassi-Oliveira, R., Brieztke, E., Teixeira, A., Pezzi, J. C., Zanini, M., Lopes, R. P., and Bauer, M. E. (2012) Peripheral chemokine levels in women with recurrent major depression with suicidal ideation, Braz. J. Psychiatry, 34, 71-75, https://doi.org/10.1590/S1516-44462012000100013.
  19. Leighton, S. P., Nerurkar, L., Krishnadas, R., Johnman, C., Graham, G. J., and Cavanagh, J. (2018) Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis, Mol. Psychiatry, 23, 48-58, https://doi.org/10.1038/mp.2017.205.
  20. Ogłodek, E. A., Szota, A. M., Just, M. J., Moś, D. M., and Araszkiewicz, A. (2015) The MCP-1, CCL-5 and SDF-1 chemokines as pro-inflammatory markers in generalized anxiety disorder and personality disorders, Pharmacol. Rep., 67, 85-89, https://doi.org/10.1016/j.pharep.2014.08.006.
  21. Прохоров А. С., Голыгина С. Е., Сахаров А. В. (2022) Хемокины в центральной нервной системе, возможная патогенетическая роль при шизофрении (обзор литературы), Психическое здоровье, 17, 100-110.
  22. Teixeira, A. L., Reis, H. J., Nicolato, R., Brito-Melo, G., Correa, H., Teixeira, M. M., and Romano-Silva, M. A. (2008) Increased serum levels of CCL11/eotaxin in schizophrenia, Progr. Neuro Psychopharmacol. Biol. Psychiatry, 32, 710-714, https://doi.org/10.1016/j.pnpbp.2007.11.019.
  23. Saoud, H., Inoubli, O., Ben Fredj, S., Hassine, M., Ben Mohamed, B., Gaha, L., and Hadj Jrad, B. B. (2019) Protective effect of the MCP-1 gene haplotype against schizophrenia, BioMed Res. Int., 2019, 1-8, https:// doi.org/10.1155/2019/4042615.
  24. Stuart, M. J., and Baune, B. T. (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies, Neurosci. Biobehav. Rev., 42, 93-115, https://doi.org/10.1016/j.neubiorev.2014.02.001.
  25. Asevedo, E., Gadelha, A., Noto, C., Mansur, R. B., Zugman, A., Belangero, S. I. N., Berberian, A. A., Scarpato, B. S., Leclerc, E., Teixeira, A. L., Gama, C. S., Bressan, R. A., and Brietzke, E. (2013) Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia, J. Psychiatr. Res., 47, 1376-1382, https://doi.org/10.1016/j.jpsychires.2013.05.032.
  26. Gilchrist, A. (2020) Chemokines and bone, Handb. Exp. Pharmacol., 262, 231-258, https://doi.org/10.1007/164_2020_349.
  27. Ransohoff, R. M. (2009) Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology, Immunity, 31, 711-721, https://doi.org/10.1016/j.immuni.2009.09.010.
  28. Murphy, P. M. (2002) International union of pharmacology. XXX. Update on chemokine receptor nomenclature, Pharmacol. Rev., 54, 227-229, https://doi.org/10.1124/pr.54.2.227.
  29. Murphy, P. M., Baggiolini, M., Charo, I. F., Hébert, C. A., Horuk, R., Matsushima, K., Miller, L. H., Oppenheim, J. J., and Power, C. A. (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors, Pharmacol. Rev., 52, 145-76.
  30. Zheng, J., Thylin, M. R., Ghorpade, A., Xiong, H., Persidsky, Y., Cotter, R., Niemann, D., Che, M., Zeng, Y.-C., Gelbard, H. A., Shepard, R. B., Swartz, J. M., and Gendelman, H. E. (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia, J. Neuroimmunol., 98, 185-200, https://doi.org/10.1016/S0165-5728(99)00049-1.
  31. Calì, C., and Bezzi, P. (2010) CXCR4-mediated glutamate exocytosis from astrocytes, J. Neuroimmunol., 224, 13-21, https://doi.org/10.1016/j.jneuroim.2010.05.004.
  32. Khan, M. Z., Brandimarti, R., Patel, J. P., Huynh, N., Wang, J., Huang, Z., Fatatis, A., and Meucci, O. (2004) Apoptotic and antiapoptotic effects of CXCR4: is it a matter of intrinsic efficacy? Implications for HIV neuropathogenesis, AIDS Res. Hum. Retroviruses, 20, 1063-1071, https://doi.org/10.1089/aid.2004.20.1063.
  33. Meucci, O., Fatatis, A., Simen, A. A., Bushell, T. J., Gray, P. W., and Miller, R. J. (1998) Chemokines regulate hippocampal neuronal signaling and Gp120 neurotoxicity, Proc. Natl. Acad. Sci. USA, 95, 14500-14505, https:// doi.org/10.1073/pnas.95.24.14500.
  34. Van der Vorst, E. P. C., Döring, Y., and Weber, C. (2015) Chemokines, Arterioscler. Thrombos. Vasc. Biol., 35, https://doi.org/10.1161/ATVBAHA.115.306359.
  35. De Timary, P., Stärkel, P., Delzenne, N. M., and Leclercq, S. (2017) A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology, 122, 148-160, https://doi.org/10.1016/ j.neuropharm.2017.04.013.
  36. Banks, W. (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology, Curr. Pharmaceut. Design, 11, 973-984, https://doi.org/10.2174/1381612053381684.
  37. Ubogu, E. E., Cossoy, M. B., and Ransohoff, R. M. (2006) The expression and function of chemokines involved in CNS inflammation, Trends Pharmacol. Sci., 27, 48-55, https://doi.org/10.1016/j.tips.2005.11.002.
  38. Laing, K. (2004) Chemokines, Dev. Compar. Immunol., 28, 443-460, https://doi.org/10.1016/j.dci.2003.09.006.
  39. Janssen, K., Rickert, M., Clarner, T., Beyer, C., and Kipp, M. (2016) Absence of CCL2 and CCL3 ameliorates central nervous system grey matter but not white matter demyelination in the presence of an intact blood-brain barrier, Mol. Neurobiol., 53, 1551-1564, https://doi.org/10.1007/s12035-015-9113-6.
  40. Zhang, K., and Luo, J. (2019) Role of MCP-1 and CCR2 in alcohol neurotoxicity, Pharmacol. Res., 139, 360-366, https://doi.org/10.1016/j.phrs.2018.11.030.
  41. Banisadr, G., Gosselin, R., Mechighel, P., Rostène, W., Kitabgi, P., and Mélik Parsadaniantz, S. (2005) Constitutive neuronal expression of CCR2 chemokine receptor and its colocalization with neurotransmitters in normal rat brain: functional effect of MCP‐1/CCL2 on calcium mobilization in primary cultured neurons, J. Compar. Neurol., 492, 178-192, https://doi.org/10.1002/cne.20729.
  42. De Haas, A. H., van Weering, H. R. J., de Jong, E. K., Boddeke, H. W. G. M., and Biber, K. P. H. (2007) Neuronal chemokines: versatile messengers in central nervous system cell interaction, Mol. Neurobiol., 36, 137-151, https://doi.org/10.1007/s12035-007-0036-8.
  43. Mélik-Parsadaniantz, S., and Rostène, W. (2008) Chemokines and neuromodulation, J. Neuroimmunol., 198, 62-68, https://doi.org/10.1016/j.jneuroim.2008.04.022.
  44. Banisadr, G., Gosselin, R., Mechighel, P., Kitabgi, P., Rostène, W., and Parsadaniantz, S. M. (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein‐1 (MCP‐1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides, J. Compar. Neurol., 489, 275-292, https://doi.org/ 10.1002/cne.20598.
  45. Gosselin, R. D., Varela, C., Banisadr, G., Mechighel, P., Rostene, W., Kitabgi, P., and Melik‐Parsadaniantz, S. (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP‐1/CCL2 of GABA‐induced currents in spinal cord neurons, J. Neurochem., 95, 1023-1034, https://doi.org/10.1111/j.1471-4159. 2005.03431.x.
  46. Galimberti, D., Fenoglio, C., Lovati, C., Venturelli, E., Guidi, I., Corrà, B., Scalabrini, D., Clerici, F., Mariani, C., Bresolin, N., and Scarpini, E. (2006) Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease, Neurobiol. Aging, 27, 1763-1768, https://doi.org/10.1016/j.neurobiolaging.2005.10.007.
  47. Mahad, D. J., and Ransohoff, R. M. (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), Semin. Immunol., 15, 23-32, https://doi.org/10.1016/S10445323(02)00125-2.
  48. Minami, M., and Satoh, M. (2003) Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury, Life Sci., 74, 321-327, https://doi.org/10.1016/j.lfs.2003.09.019.
  49. Wu, D., Zhou, J., Bi, H., Li, L., Gao, W., Huang, M., Adcock, I. M., Barnes, P. J., and Yao, X. (2014) CCL11 as a potential diagnostic marker for asthma? J. Asthma, 51, 847-854, https://doi.org/10.3109/02770903. 2014.917659.
  50. Baruch, K., Ron-Harel, N., Gal, H., Deczkowska, A., Shifrut, E., Ndifon, W., Mirlas-Neisberg, N., Cardon, M., Vaknin, I., Cahalon, L., Berkutzki, T., Mattson, M. P., Gomez-Pinilla, F., Friedman, N., and Schwartz, M. (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging, Proc. Natl. Acad. Sci. USA, 110, 2264-2269, https://doi.org/10.1073/pnas.1211270110.
  51. Erickson, M. A., Morofuji, Y., Owen, J. B., and Banks, W. A. (2014) Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells, J. Pharmacol. Exp. Ther., 349, 497-507, https://doi.org/10.1124/jpet.114.213074.
  52. Krathwohl, M. D., and Kaiser, J. L. (2004) Chemokines promote quiescence and survival of human neural progenitor cells, Stem Cells, 22, 109-118, https://doi.org/10.1634/stemcells.22-1-109.
  53. Parajuli, B., Horiuchi, H., Mizuno, T., Takeuchi, H., and Suzumura, A. (2015) CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia, Glia, 63, 2274-2284, https://doi.org/10.1002/ glia.22892.
  54. Cunha, G. R., Asevedo, E., Mansur, R. B., Zugman, A., Pan, P. M., Gadelha, A., Belangero, S. I., Rizzo, L. B., Coelho, R., Stertz, L., Cogo‐Moreira, H., Grassi‐Oliveira, R., Teixeira, A. L., Kauer‐Sant’Anna, M., Mari, J. J., Miguel, E. C., Bressan, R. A., and Brietzke, E. (2016) Inflammation, neurotrophism and oxidative stress and childhood psychopathology in a large community sample, Acta Psychiatr. Scand., 133, 122-132, https://doi.org/ 10.1111/acps.12453.
  55. Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., and Guastella, A. J. (2015) Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis, Mol. Psychiatry, 20, 440-446, https:// doi.org/10.1038/mp.2014.59.
  56. Tokac, D., Tuzun, E., Gulec, H., Yılmaz, V., Bireller, E. S., Cakmakoglu, B., and Kucukali, C. I. (2016) Chemokine and Chemokine receptor polymorphisms in bipolar disorder, Psychiatry Invest., 13, 541, https://doi.org/10.4306/pi.2016.13.5.541.
  57. Ho, P.-S., Yen, C.-H., Chen, C.-Y., Huang, S.-Y., and Liang, C.-S. (2017) Changes in cytokine and chemokine expression distinguish dysthymic disorder from major depression and healthy controls, Psychiatry Res., 248, 20-27, https://doi.org/10.1016/j.psychres.2016.12.014.
  58. Fontenelle, L. F., Barbosa, I. G., Luna, J. V., de Sousa, L. P., Abreu, M. N. S., and Teixeira, A. L. (2012) A cytokine study of adult patients with obsessive-compulsive disorder, Comprehensive Psychiatry, 53, 797-804, https:// doi.org/10.1016/j.comppsych.2011.12.007.
  59. García-Marchena, N., Araos, P. F., Barrios, V., Sánchez-Marín, L., Chowen, J. A., Pedraz, M., Castilla-Ortega, E., Romero-Sanchiz, P., Ponce, G., Gavito, A. L., Decara, J., Silva, D., Torrens, M., Argente, J., Rubio, G., Serrano, A., de Fonseca, F. R., and Pavón, F. J. (2017) Plasma chemokines in patients with alcohol use disorders: association of CCL11 (eotaxin-1) with psychiatric comorbidity, Front. Psychiatry, 7, https://doi.org/10.3389/fpsyt. 2016.00214.
  60. Kuo, H.-W., Liu, T.-H., Tsou, H.-H., Hsu, Y.-T., Wang, S.-C., Fang, C.-P., Liu, C.-C., Chen, A. C. H., and Liu, Y.-L. (2018) Inflammatory chemokine eotaxin-1 is correlated with age in heroin dependent patients under methadone maintenance therapy, Drug Alcohol Depend., 183, 19-24, https://doi.org/10.1016/j.drugalcdep.2017.10.014.
  61. Panizzutti, B., Gubert, C., Schuh, A. L., Ferrari, P., Bristot, G., Fries, G. R., Massuda, R., Walz, J., Rocha, N. P., Berk, M., Teixeira, A. L., and Gama, C. S. (2015) Increased serum levels of eotaxin/CCL11 in late-stage patients with bipolar disorder: an accelerated aging biomarker? J. Affect. Disord., 182, 64-69, https://doi.org/10.1016/ j.jad.2014.12.010.
  62. Kim, K.-W., Vallon-Eberhard, A., Zigmond, E., Farache, J., Shezen, E., Shakhar, G., Ludwig, A., Lira, S. A., and Jung, S. (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine, Blood, 118, e156-e167, https://doi.org/10.1182/blood-2011-04-348946.
  63. Vukovic, J., Colditz, M. J., Blackmore, D. G., Ruitenberg, M. J., and Bartlett, P. F. (2012) Microglia modulate hippocampal neural precursor activity in response to exercise and aging, J. Neurosci., 32, 6435-6443, https:// doi.org/10.1523/JNEUROSCI.5925-11.2012.
  64. Sheridan, G. K., and Murphy, K. J. (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage, Open Biol., 3, 130181, https://doi.org/10.1098/rsob.130181.
  65. Blauth, K., Zhang, X., Chopra, M., Rogan, S., and Markovic-Plese, S. (2015) The role of fractalkine (CX3CL1) in regulation of CD4+ cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis, Clin. Immunol., 157, 121-132, https://doi.org/10.1016/j.clim.2015.01.001.
  66. Aurelian, L., and Balan, I. (2019) GABAAR Α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance, Psychopharmacology, 236, 3023-3043, https:// doi.org/10.1007/s00213-019-05220-4.
  67. Kalinin, S., González-Prieto, M., Scheiblich, H., Lisi, L., Kusumo, H., Heneka, M. T., Madrigal, J. L. M., Pandey, S. C., and Feinstein, D. L. (2018) Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis, J. Neuroinflamm., 15, 141, https://doi.org/10.1186/s12974-018-1184-7.
  68. Blednov, Y., Bergeson, S., Walker, D., Ferreira, V., Kuziel, W., and Harris, R. (2005) Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol, Behav. Brain Res., 165, 110-125, https:// doi.org/10.1016/j.bbr.2005.06.026.
  69. He, J., and Crews, F. T. (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain, Exp. Neurol., 210, 349-358, https://doi.org/10.1016/j.expneurol.2007.11.017.
  70. Holloway, K. N., Douglas, J. C., Rafferty, T. M., Majewska, A. K., Kane, C. J. M., and Drew, P. D. (2023) Ethanol-induced cerebellar transcriptomic changes in a postnatal model of fetal alcohol spectrum disorders: focus on disease onset, Front. Neuroscience, 17, https://doi.org/10.3389/fnins.2023.1154637.
  71. Blednov, Y. A., Ponomarev, I., Geil, C., Bergeson, S., Koob, G. F., and Harris, R. A. (2012) Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies, Addict. Biol., 17, 108-120, https://doi.org/10.1111/j.1369-1600.2010.00284.x.
  72. Ren, Z., Wang, X., Yang, F., Xu, M., Frank, J. A., Wang, H., Wang, S., Ke, Z., and Luo, J. (2017) Ethanol-induced damage to the developing spinal cord: the involvement of CCR2 signaling, Biochim. Biophys. Acta, 1863, 2746-2761, https://doi.org/10.1016/j.bbadis.2017.07.035.
  73. Chang, G.-Q., Karatayev, O., Boorgu, D. S. S. K., and Leibowitz, S. F. (2020) CCL2/CCR2 System in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons, J. Neuroinflamm., 17, 207, https://doi.org/ 10.1186/s12974-020-01875-5.
  74. Holloway, K. N., Douglas, J. C., Rafferty, T. M., Kane, C. J. M., and Drew, P. D. (2023) Ethanol induces neuroinflammation in a chronic plus binge mouse model of alcohol use disorder via TLR4 and MyD88-dependent signaling, Cells, 12, 2109, https://doi.org/10.3390/cells12162109.
  75. Guyon, A., Skrzydelski, D., De Giry, I., Rovère, C., Conductier, G., Trocello, J. M., Daugé, V., Kitabgi, P., Rostène, W., Nahon, J. L., and Mélik Parsadaniantz, S. (2009) Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release, Neuroscience, 162, 1072-1080, https://doi.org/10.1016/j.neuroscience.2009.05.048.
  76. June, H. L., Liu, J., Warnock, K. T., Bell, K. A., Balan, I., Bollino, D., Puche, A., and Aurelian, L. (2015) CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration, Neuropsychopharmacology, 40, 1549-1559, https://doi.org/10.1038/npp.2015.4.
  77. Zhang, K., Wang, H., Xu, M., Frank, J. A., and Luo, J. (2018) Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain, J. Neuroinflammation, 15, 197, https:// doi.org/10.1186/s12974-018-1241-2.
  78. Yang, G., Meng, Y., Li, W., Yong, Y., Fan, Z., Ding, H., Wei, Y., Luo, J., and Ke, Z. (2011) Neuronal MCP‐1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism, Brain Pathol., 21, 279-297, https://doi.org/10.1111/j.1750-3639.2010.00445.x.
  79. Drew, P. D., Johnson, J. W., Douglas, J. C., Phelan, K. D., and Kane, C. J. M. (2015) Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders, Alcohol. Clin. Exp. Res., 39, 445-454, https://doi.org/10.1111/acer.12639.
  80. Kane, C. J. M., Phelan, K. D., Douglas, J. C., Wagoner, G., Johnson, J. W., Xu, J., Phelan, P. S., and Drew, P. D. (2014) Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice, Alcohol. Clin. Exp. Res., 38, 384-391, https://doi.org/10.1111/acer.12244.
  81. Chastain, L. G., and Sarkar, D. K. (2014) Role of microglia in regulation of ethanol neurotoxic action, Int. Rev. Neurobiol., 118, 81-103, https://doi.org/10.1016/B978-0-12-801284-0.00004-X.
  82. Ren, Z., Wang, X., Xu, M., Frank, J. A., and Luo, J. (2019) Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord, Alcohol, 79, 25-35, https://doi.org/10.1016/j.alcohol.2018.12.002.
  83. Niedzwiedz-Massey, V. M., Douglas, J. C., Rafferty, T., Johnson, J. W., Holloway, K. N., Berquist, M. D., Kane, C. J. M., and Drew, P. D. (2023) Effects of chronic and binge ethanol administration on mouse cerebellar and hippocampal neuroinflammation, Am. J. Drug Alcohol Abuse, 49, 345-358, https://doi.org/10.1080/00952990. 2022.2128361.
  84. Qin, L., He, J., Hanes, R. N., Pluzarev, O., Hong, J.-S., and Crews, F. T. (2008) increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment, J. Neuroinflammation, 5, 10, https://doi.org/10.1186/1742-2094-5-10.
  85. Rankine, E. L., Hughes, P. M., Botham, M. S., Perry, V. H., and Felton, L. M. (2006) Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP‐1‐deficient mice prior to leucocyte recruitment, Eur. J. Neurosci., 24, 77-86, https://doi.org/10.1111/j.1460-9568.2006.04891.x.
  86. Valenta, J. P., and Gonzales, R. A. (2016) Chronic intracerebroventricular Infusion of monocyte chemoattractant protein‐1 leads to a persistent increase in sweetened ethanol consumption during operant self‐administration but does not influence sucrose consumption in Long‐Evans rats, Alcoholi. Clin. Exp. Res., 40, 187-195, https://doi.org/10.1111/acer.12928.
  87. Bray, J. G., Roberts, A. J., and Gruol, D. L. (2017) Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol, Neuroscience, 354, 88-100, https://doi.org/10.1016/j.neuroscience.2017.04.009.
  88. Lowe, P. P., Morel, C., Ambade, A., Iracheta-Vellve, A., Kwiatkowski, E., Satishchandran, A., Furi, I., Cho, Y., Gyongyosi, B., Catalano, D., Lefebvre, E., Fischer, L., Seyedkazemi, S., Schafer, D. P., and Szabo, G. (2020) Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations, J. Neuroinflamm., 17, 296, https://doi.org/10.1186/s12974-020-01972-5.
  89. Lowe, P. P., Gyongyosi, B., Satishchandran, A., Iracheta-Vellve, A., Cho, Y., Ambade, A., and Szabo, G. (2018) Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression, J. Neuroinflamm., 15, 298, https://doi.org/10.1186/s12974-018-1328-9.
  90. Huang, M.-C., Chung, R.-H., Lin, P.-H., Kuo, H.-W., Liu, T.-H., Chen, Y.-Y., Chen, A. C. H., and Liu, Y.-L. (2022) Increase in plasma CCL11 (eotaxin-1) in patients with alcohol dependence and changes during detoxification, Brain Behav. Immun., 99, 83-90, https://doi.org/10.1016/j.bbi.2021.09.016.
  91. Ruggiero, M. J., Boschen, K. E., Roth, T. L., and Klintsova, A. Y. (2018) Sex differences in early postnatal microglial colonization of the developing rat hippocampus following a single-day alcohol exposure, J. Neuroimmune Pharmacol., 13, 189-203, https://doi.org/10.1007/s11481-017-9774-1.
  92. Kane, C. J., Phelan, K. D., Douglas, J. C., Wagoner, G., Johnson, J. W., Xu, J., and Drew, P. D. (2013) Effects of ethanol on immune response in the brain: region-specific changes in aged mice, J. Neuroinflammation, 10, 834, https://doi.org/10.1186/1742-2094-10-66.
  93. Berríos-Cárcamo, P., Núñez, S., Castañeda, J., Gallardo, J., Bono, M. R., and Ezquer, F. (2024) Two-month voluntary ethanol consumption promotes mild neuroinflammation in the cerebellum but not in the prefrontal cortex, hippocampus, or striatum of mice, Int. J. Mol. Sci., 25, 4173, https://doi.org/10.3390/ijms25084173.
  94. Li, N., Liu, H., Xue, Y., Xu, Z., Miao, X., Guo, Y., Li, Z., Fan, Z., and Xu, Y. (2023) Targetable Brg1-CXCL14 axis contributes to alcoholic liver injury by driving neutrophil trafficking, EMBO Mol. Med., 15, https://doi.org/10.15252/emmm.202216592.
  95. Kusumanchi, P., Liang, T., Zhang, T., Ross, R. A., Han, S., Chandler, K., Oshodi, A., Jiang, Y., Dent, A. L., Skill, N. J., Huda, N., Ma, J., Yang, Z., and Liangpunsakul, S. (2021) Stress‐responsive gene FK506‐binding protein 51 mediates alcohol‐induced liver injury through the hippo pathway and chemokine (C‐X‐C Motif) ligand 1 signaling, Hepatology, 74, 1234-1250, https://doi.org/10.1002/hep.31800.
  96. Chang, G., Collier, A. D., Karatayev, O., Gulati, G., Boorgu, D. S. S. K., and Leibowitz, S. F. (2020) Moderate prenatal ethanol exposure stimulates CXCL12/CXCR4 chemokine system in radial glia progenitor cells in hypothalamic neuroepithelium and peptide neurons in lateral hypothalamus of the embryo and postnatal offspring, Alcohol. Clin. Exp. Res., 44, 866-879, https://doi.org/10.1111/acer.14296.
  97. Helms, C. M., Messaoudi, I., Jeng, S., Freeman, W. M., Vrana, K. E., and Grant, K. A. (2012) A longitudinal analysis of circulating stress‐related proteins and chronic ethanol self‐administration in cynomolgus macaques, Alcohol. Clin. Exp. Res., 36, 995-1003, https://doi.org/10.1111/j.1530-0277.2011.01685.x.
  98. Collier, A. D., Khalizova, N., Chang, G., Min, S., Campbell, S., Gulati, G., and Leibowitz, S. F. (2020) Involvement of Cxcl12a/Cxcr4b chemokine system in mediating the stimulatory effect of embryonic ethanol exposure on neuronal density in zebrafish hypothalamus, Alcohol. Clin. Exp. Res., 44, 2519-2535, https://doi.org/10.1111/acer.14482.
  99. Pascual, M., Montesinos, J., Marcos, M., Torres, J., Costa‐Alba, P., García‐García, F., Laso, F., and Guerri, C. (2017) Gender differences in the inflammatory cytokine and chemokine profiles induced by binge ethanol drinking in adolescence, Addict. Biol., 22, 1829-1841, https://doi.org/10.1111/adb.12461.
  100. Pascual, M., Baliño, P., Aragón, C. M. G., and Guerri, C. (2015) Cytokines and chemokines as biomarkers of ethanol-induced neuroinflammation and anxiety-related behavior: role of TLR4 and TLR2, Neuropharmacology, 89, 352-359, https://doi.org/10.1016/j.neuropharm.2014.10.014.
  101. Melbourne, J. K., Chandler, C. M., Van Doorn, C. E., Bardo, M. T., Pauly, J. R., Peng, H., and Nixon, K. (2021) Primed for addiction: a critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking, Alcohol. Clin. Exp. Res., 45, 1908-1926, https://doi.org/10.1111/acer.14694.
  102. Mednova, I. A., Levchuk, L. A., Boiko, A. S., Roschina, O. V., Simutkin, G. G., Bokhan, N. A., Loonen, A. J. M., and Ivanova, S. A. (2023) Cytokine level in patients with mood disorder, alcohol use disorder and their comorbidity, World J. Biol. Psychiatry, 24, 243-253, https://doi.org/10.1080/15622975.2022.2095439.
  103. Roberto, M., Patel, R. R., and Bajo, M. (2017) Ethanol and cytokines in the central nervous system, Handb. Exp. Pharmacol., 248, 397-431, https://doi.org/10.1007/164_2017_77.
  104. Vetreno, R. P., Qin, L., Coleman, L. G., and Crews, F. T. (2021) Increased Toll‐like receptor‐MyD88‐NFκB-proinflammatory neuroimmune signaling in the orbitofrontal cortex of humans with alcohol use disorder, Alcohol. Clin. Exp. Res., 45, 1747-1761, https://doi.org/10.1111/acer.14669.
  105. Bray, J. G., Reyes, K. C., Roberts, A. J., and Gruol, D. L. (2018) Altered hippocampal synaptic function in transgenic mice with increased astrocyte expression of CCL2 after withdrawal from chronic alcohol, Neuropharmacology, 135, 113-125, https://doi.org/10.1016/j.neuropharm.2018.02.031.
  106. Mineur, Y. S., Garcia-Rivas, V., Thomas, M. A., Soares, A. R., McKee, S. A., and Picciotto, M. R. (2022) Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways, Psychopharmacology, 239, 2041-2061, https://doi.org/10.1007/s00213-022-06120-w.
  107. Cruz, B., Borgonetti, V., Bajo, M., and Roberto, M. (2023) Sex-dependent factors of alcohol and neuroimmune mechanisms, Neurobiol. Stress, 26, 100562, https://doi.org/10.1016/j.ynstr.2023.100562.
  108. Bjørkhaug, S. T., Neupane, S. P., Bramness, J. G., Aanes, H., Skar, V., Medhus, A. W., and Valeur, J. (2020) Plasma cytokine levels in patients with chronic alcohol overconsumption: relations to gut microbiota markers and clinical correlates, Alcohol, 85, 35-40, https://doi.org/10.1016/j.alcohol.2019.10.002.
  109. Monnig, M. A., and Negash, S. (2024) Immune biomarkers in non-treatment-seeking heavy drinkers who used a probiotic supplement for 30 days: an open-label pilot study, Alcohol, 114, 43-50, https://doi.org/10.1016/ j.alcohol.2023.08.007.
  110. Monnig, M. A., Lamb, P. S., Parra, J. M., Cioe, P. A., Martone, C. M., Monti, P. M., and Szabo, G. (2020) Immune response to an acute moderate dose of alcohol in healthy young adults, Alcohol Alcohol., 55, 616-623, https://doi.org/10.1093/alcalc/agaa079.
  111. Kazmi, N., Wallen, G. R., Yang, L., Alkhatib, J., Schwandt, M. L., Feng, D., Gao, B., Diazgranados, N., Ramchandani, V. A., and Barb, J. J. (2022) An exploratory study of pro-inflammatory cytokines in individuals with alcohol use disorder: MCP-1 and IL-8 associated with alcohol consumption, sleep quality, anxiety, depression, and liver biomarkers, Front. Psychiatry, 13, https://doi.org/10.3389/fpsyt.2022.931280.
  112. Umhau, J. C., Schwandt, M., Solomon, M. G., Yuan, P., Nugent, A., Zarate, C. A., Drevets, W. C., Hall, S. D., George, D. T., and Heilig, M. (2014) Cerebrospinal fluid monocyte chemoattractant protein‐1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism, Alcohol. Clin. Exp. Res., 38, 1301-1306, https://doi.org/10.1111/acer.12367.
  113. Hayashi, H., and Sakai, T. (2011) Animal models for the study of liver fibrosis: new insights from knockout mouse models, Am. J. Physiol. Gastrointest. Liver Physiol., 300, G729-G738, https://doi.org/10.1152/ajpgi. 00013.2011.
  114. Gao, B., and Bataller, R. (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets, Gastroenterology, 141, 1572-1585, https://doi.org/10.1053/j.gastro.2011.09.002.
  115. Dominguez, M., Miquel, R., Colmenero, J., Moreno, M., García-Pagán, J., Bosch, J., Arroyo, V., Ginès, P., Caballería, J., and Bataller, R. (2009) Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis, Gastroenterology, 136, 1639-1650, https://doi.org/10.1053/j.gastro. 2009.01.056.
  116. Wakil, A., Niazi, M., Meybodi, M. A., and Pyrsopoulos, N. T. (2023) Emerging pharmacotherapies in alcohol-associated hepatitis, J. Clin. Exp. Hepatol., 13, 116-126, https://doi.org/10.1016/j.jceh.2022.06.012.
  117. Liu, M., Cao, S., He, L., Gao, J., Arab, J. P., Cui, H., Xuan, W., Gao, Y., Sehrawat, T. S., Hamdan, F. H., Ventura-Cots, M., Argemi, J., Pomerantz, W. C. K., Johnsen, S. A., Lee, J.-H., Gao, F., Ordog, T., Mathurin, P., Revzin, A., Bataller, R., Yan, H., and Shah, V. H. (2021) Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis, Nat. Commun., 12, 4560, https://doi.org/10.1038/s41467-021-24843-w.
  118. Poulsen, K. L., Fan, X. D., Kibler, C. D., Huang, E., Wu, X., McMullen, M. R., Leng, L., Bucala, R., Ventura-Cots, M., Argemi, J., Bataller, R., and Nagy, L. E. (2021) Role of MIF in coordinated expression of hepatic chemokines in patients with alcohol-associated hepatitis, JCI Insight, 6, e141420, https://doi.org/10.1172/jci.insight.141420.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Вклад хемокинов в развитие нейровоспаления при интоксикации алкоголем. Этанол (EtOH) своим действием на клетки печени и ЦНС приводит к увеличению (↑) экспрессии одних хемокинов и их рецепторов (CCL2, 11, C3AR1, CXCL1, -2, -4, -5, -6, -8, -10) и снижению (↓) экспрессии других (CXCL12, CX3CL1). Хемокины, в свою очередь, взаимодействуя со своими GPCR-рецепторами на поверхности микроглии и нейронов, способствуют активации (!) микроглии, хемотаксису и инфильтрации нейтрофилов и макрофагов в очаг воспаления, активации окислительного стресса и экспрессии ряда провоспалительных факторов. Измененная экспрессия хемокинов в ЦНС также приводит к активации дофаминовой системы и увеличению потребления алкоголя, что, в свою очередь, ведет к еще большему изменению экспрессии хемокинов. Таким образом, развитие нейровоспаления приводит к нарушению нейрогенеза, нейродегенерации и апоптозу нейронов

Скачать (176KB)

© Российская академия наук, 2024