Physiological concentrations of calciprotein particles trigger activation and pro-inflammatory response in endothelial cells and monocytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Supraphysiological concentrations of calciprotein particles (CPPs), which are indispensable scavengers of excessive Ca2+ and PO43– ions in blood, induce pro-inflammatory activation of endothelial cells (ECs) and monocytes. Here, we determined physiological levels of CPPs (10 μg/mL calcium, corresponding to 10% increase in Ca2+ in the serum or medium) and investigated whether the pathological effects of calcium stress depend on the calcium delivery form, such as Ca2+ ions, albumin- or fetuin-centric calciprotein monomers (CPM-A/CPM-F), and albumin- or fetuin-centric CPPs (CPP-A/CPP-F). The treatment with CPP-A or CPP-F upregulated transcription of pro-inflammatory genes (VCAM1, ICAM1, SELE, IL6, CXCL8, CCL2, CXCL1, MIF) and promoted release of pro-inflammatory cytokines (IL-6, IL-8, MCP-1/CCL2, and MIP-3α/CCL20) and pro- and anti-thrombotic molecules (PAI-1 and uPAR) in human arterial ECs and monocytes, although these results depended on the type of cell and calcium-containing particles. Free Ca2+ ions and CPM-A/CPM-F induced less consistent detrimental effects. Intravenous administration of CaCl2, CPM-A, or CPP-A to Wistar rats increased production of chemokines (CX3CL1, MCP-1/CCL2, CXCL7, CCL11, CCL17), hepatokines (hepassocin, fetuin-A, FGF-21, GDF-15), proteases (MMP-2, MMP-3) and protease inhibitors (PAI-1) into the circulation. We concluded that molecular consequences of calcium overload are largely determined by the form of its delivery and CPPs are efficient inducers of mineral stress at physiological levels.

Full Text

Restricted Access

About the authors

D. K. Shishkova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

V. E. Markova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

Y. O. Markova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

M. Yu. Sinitsky

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

A. V. Sinitskaya

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

V. G. Matveeva

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

E. A. Torgunakova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

A. I. Lazebnaya

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

A. D. Stepanov

Research Institute for Complex Issues of Cardiovascular Diseases

Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

A. G. Kutikhin

Research Institute for Complex Issues of Cardiovascular Diseases

Author for correspondence.
Email: kytiag@kemcardio.ru

Department of Experimental Medicine

Russian Federation, 650002 Kemerovo

References

  1. Heiss, A., Pipich, V., Jahnen-Dechent, W., and Schwahn, D. (2010) Fetuin-A is a mineral carrier protein: small angle neutron scattering provides new insight on Fetuin-A controlled calcification inhibition, Biophys. J., 99, 3986-3995, https://doi.org/10.1016/j.bpj.2010.10.030.
  2. Jahnen-Dechent, W., Heiss, A., Schäfer, C., and Ketteler, M. (2011) Fetuin-A regulation of calcified matrix metabolism, Circ. Res., 108, 1494-1509, https://doi.org/10.1161/CIRCRESAHA.110.234260.
  3. Jahnen-Dechent, W., Büscher, A., Köppert, S., Heiss, A., Kuro-O, M., and Smith, E. R. (2020) Mud in the blood: the role of protein-mineral complexes and extracellular vesicles in biomineralisation and calcification, J. Struct. Biol., 212, 107577, https://doi.org/10.1016/j.jsb.2020.107577.
  4. Smith, E. R., Hewitson, T. D., and Jahnen-Dechent, W. (2020) Calciprotein particles: mineral behaving badly? Curr. Opin. Nephrol. Hypertens., 29, 378-386, https://doi.org/10.1097/MNH.0000000000000609.
  5. Kutikhin, A. G., Feenstra, L., Kostyunin, A. E., Yuzhalin, A. E., Hillebrands, J. L., and Krenning, G. (2021) Calciprotein particles: balancing mineral homeostasis and vascular pathology, Arterioscler. Thromb. Vasc. Biol., 41, 1607-1624, https://doi.org/10.1161/ATVBAHA.120.31569.
  6. Jahnen-Dechent, W., and Pasch, A. (2023) Solving the insoluble: calciprotein particles mediate bulk mineral transport, Kidney Int., 103, 663-665, https://doi.org/10.1016/j.kint.2023.01.011.
  7. Bäck, M., Aranyi, T., Cancela, M. L., Carracedo, M., Conceição, N., Leftheriotis, G., Macrae, V., Martin, L., Nitschke, Y., Pasch, A., Quaglino, D., Rutsch, F., Shanahan, C., Sorribas, V., Szeri, F., Valdivielso, P., Vanakker, O., and Kempf, H. (2019) Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST Action EuroSoftCalcNet, Front. Cardiovasc. Med., 5, 196, https://doi.org/10.3389/fcvm.2018.00196.
  8. Kutikhin, A. G., Velikanova, E. A., Mukhamadiyarov, R. A., Glushkova, T. V., Borisov, V. V., Matveeva, V. G., Antonova, L. V., Filip’ev, D. E., Golovkin, A. S., Shishkova, D. K., Burago, A. Y., Frolov, A. V., Dolgov, V. Y., Efimova, O. S., Popova, A. N., Malysheva, V. Y., Vladimirov, A. A., Sozinov, S. A., Ismagilov, Z. R., Russakov, D. M., Lomzov, A. A., Pyshnyi, D. V., Gutakovsky, A. K., Zhivodkov, Y. A., Demidov, E. A., Peltek, S. E., Dolganyuk, V. F., Babich, O. O., Grigoriev, E. V., Brusina, E. B., Barbarash, O. L., and Yuzhalin, A. E. (2016) Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions, Sci. Rep., 6, 27255, https://doi.org/10.1038/srep27255.
  9. Shishkova, D., Velikanova, E., Sinitsky, M., Tsepokina, A., Gruzdeva, O., Bogdanov, L., and Kutikhin, A. (2019) Calcium phosphate bions cause intimal hyperplasia in intact aortas of normolipidemic rats through endothelial injury, Int. J. Mol. Sci., 20, 5728, https://doi.org/10.3390/ijms20225728.
  10. Shishkova, D., Markova, V., Sinitsky, M., Tsepokina, A., Velikanova, E., Bogdanov, L., Glushkova, T., and Kutikhin, A. (2020) Calciprotein particles cause endothelial dysfunction under flow, Int. J. Mol. Sci., 21, 8802, https://doi.org/10.3390/ijms21228802.
  11. Shishkova, D. K., Velikanova, E. A., Bogdanov, L. A., Sinitsky, M. Y., Kostyunin, A. E., Tsepokina, A. V., Gruzdeva, O. V., Mironov, A. V., Mukhamadiyarov, R. A., Glushkova, T. V., Krivkina, E. O., Matveeva, V. G., Hryachkova, O. N., Markova, V. E., Dyleva, Y. A., Belik, E. V., Frolov, A. V., Shabaev, A. R., Efimova, O. S., Popova, A. N., Malysheva, V. Y., Kolmykov, R. P., Sevostyanov, O. G., Russakov, D. M., Dolganyuk, V. F., Gutakovsky, A. K., Zhivodkov, Y. A., Kozhukhov, A. S., Brusina, E. B., Ismagilov, Z. R., Barbarash, O. L., Yuzhalin, A. E., and Kutikhin, A. G. (2021) Calciprotein particles link disturbed mineral homeostasis with cardiovascular disease by causing endothelial dysfunction and vascular inflammation, Int. J. Mol. Sci., 22, 12458, https://doi.org/10.3390/ijms222212458.
  12. Bogdanov, L., Shishkova, D., Mukhamadiyarov, R., Velikanova, E., Tsepokina, A., Terekhov, A., Koshelev, V., Kanonykina, A., Shabaev, A., Frolov, A., Zagorodnikov, N., and Kutikhin, A. (2022) Excessive adventitial and perivascular vascularisation correlates with vascular inflammation and intimal hyperplasia, Int. J. Mol. Sci., 23, 12156, https://doi.org/10.3390/ijms232012156.
  13. Shishkova, D., Lobov, A., Zainullina, B., Matveeva, V., Markova, V., Sinitskaya, A., Velikanova, E., Sinitsky, M., Kanonykina, A., Dyleva, Y., and Kutikhin, A. (2022) Calciprotein particles cause physiologically significant pro-inflammatory response in endothelial cells and systemic circulation, Int. J. Mol. Sci., 23, 14941, https://doi.org/10.3390/ijms232314941.
  14. Feenstra, L., Kutikhin, A. G., Shishkova, D. K., Buikema, H., Zeper, L. W., Bourgonje, A. R., Krenning, G., and Hillebrands, J. L. (2023) Calciprotein particles induce endothelial dysfunction by impairing endothelial nitric oxide metabolism, Arterioscler. Thromb. Vasc. Biol., 43, 443-455, https://doi.org/10.1161/ATVBAHA.122.318420.
  15. Shishkova, D., Lobov, A., Repkin, E., Markova, V., Markova, Y., Sinitskaya, A., Sinitsky, M., Kondratiev, E., Torgunakova, E., and Kutikhin, A. (2023) Calciprotein particles induce cellular compartment-specific proteome alterations in human arterial endothelial cells, J. Cardiovasc. Dev. Dis., 11, 5, https://doi.org/10.3390/jcdd11010005.
  16. Herrmann, M., Schäfer, C., Heiss, A., Gräber, S., Kinkeldey, A., Büscher, A., Schmitt, M. M., Bornemann, J., Nimmerjahn, F., Herrmann, M., Helming, L., Gordon, S., and Jahnen-Dechent, W. (2012) Clearance of fetuin-A-containing calciprotein particles is mediated by scavenger receptor-A, Circ. Res., 111, 575-584, https://doi.org/10.1161/CIRCRESAHA.111.261479.
  17. Köppert, S., Büscher, A., Babler, A., Ghallab, A., Buhl, E. M., Latz, E., Hengstler, J. G., Smith, E. R., and Jahnen-Dechent, W. (2018) Cellular clearance and biological activity of calciprotein particles depend on their maturation state and crystallinity, Front. Immunol., 9, 1991, https://doi.org/10.3389/fimmu.2018.01991.
  18. Koeppert, S., Ghallab, A., Peglow, S., Winkler, C. F., Graeber, S., Büscher, A., Hengstler, J. G., and Jahnen-Dechent, W. (2021) Live imaging of calciprotein particle clearance and receptor mediated uptake: role of calciprotein monomers, Front. Cell Dev. Biol., 9, 633925, https://doi.org/10.3389/fcell.2021.633925.
  19. Zeper, L. W., Bos, C., Leermakers, P. A., Franssen, G. M., Raavé, R., Hoenderop, J. G. J., and de Baaij, J. H. F. (2024) Liver and spleen predominantly mediate calciprotein particle clearance in a rat model of chronic kidney disease, Am. J. Physiol. Renal Physiol., 326, F622-F634, https://doi.org/10.1152/ajprenal.00239.2023.
  20. Hutcheson, J. D., and Goettsch, C. (2023) Cardiovascular calcification heterogeneity in chronic kidney disease, Circ. Res., 132, 993-1012, https://doi.org/10.1161/CIRCRESAHA.123.321760.
  21. Sutton, N. R., Malhotra, R., St Hilaire, C., Aikawa, E., Blumenthal, R. S., Gackenbach, G., Goyal, P., Johnson, A., Nigwekar, S. U., Shanahan, C. M., Towler, D. A., Wolford, B. N., and Chen, Y. (2023) Molecular mechanisms of vascular health: insights from vascular aging and calcification, Arterioscler. Thromb. Vasc. Biol., 43, 15-29, https://doi.org/10.1161/ATVBAHA.122.317332.
  22. Turner, M. E., Beck, L., Hill Gallant, K. M., Chen, Y., Moe, O. W., Kuro-O, M., Moe, S. M., and Aikawa, E. (2024) Phosphate in cardiovascular disease: from new insights into molecular mechanisms to clinical implications, Arterioscler. Thromb. Vasc. Biol., 44, 584-602, https://doi.org/10.1161/ATVBAHA.123.319198.
  23. Smith, E. R., Hanssen, E., McMahon, L. P., and Holt, S. G. (2013) Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage, PLoS One, 8, e60904, https://doi.org/10.1371/journal.pone.0060904.
  24. Peng, H. H., Wu, C. Y., Young, D., Martel, J., Young, A., Ojcius, D. M., Lee, Y. H., and Young, J. D. (2013) Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids, Small, 9, 2297-2307, https://doi.org/10.1002/smll.201202270.
  25. Anzai, F., Karasawa, T., Komada, T., Yamada, N., Miura, Y., Sampilvanjil, A., Baatarjav, C., Fujimura, K., Matsumura, T., Tago, K., Kurosu, H., Takeishi, Y., Kuro-O, M., and Takahashi, M. (2021) Calciprotein particles induce IL-1β/α-mediated inflammation through NLRP3 inflammasome-dependent and -independent mechanisms, Immunohorizons, 5, 602-614, https://doi.org/10.4049/immunohorizons.2100066.
  26. Murthy, S., Karkossa, I., Schmidt, C., Hoffmann, A., Hagemann, T., Rothe, K., Seifert, O., Anderegg, U., von Bergen, M., Schubert, K., and Rossol, M. (2022) Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages, Cell Death Dis., 13, 53, https://doi.org/10.1038/s41419-022-04507-3.
  27. Tiong, M. K., Smith, E. R., Toussaint, N. D., Al-Khayyat, H. F., and Holt, S. G. (2021) Reduction of calciprotein particles in adults receiving infliximab for chronic inflammatory disease, JBMR Plus, 5, e10497, https:// doi.org/10.1002/jbm4.10497.
  28. Kunishige, R., Mizoguchi, M., Tsubouchi, A., Hanaoka, K., Miura, Y., Kurosu, H., Urano, Y., Kuro-O, M., and Murata, M. (2020) Calciprotein particle-induced cytotoxicity via lysosomal dysfunction and altered cholesterol distribution in renal epithelial HK-2 cells, Sci. Rep., 10, 20125, https://doi.org/10.1038/s41598-020-77308-3.
  29. Kobylecki, C. J., Nordestgaard, B. G., and Afzal, S. (2021) Plasma ionized calcium and risk of cardiovascular disease: 106,774 individuals from the Copenhagen General Population Study, Clin. Chem., 67, 265-275, https://doi.org/10.1093/clinchem/hvaa245.
  30. Kobylecki, C. J., Nordestgaard, B. G., and Afzal, S. (2022) Low plasma ionized calcium is associated with increased mortality: a population-based study of 106,768 individuals, J. Clin. Endocrinol. Metab., 107, e3039-e3047, https://doi.org/10.1210/clinem/dgac146.
  31. Gimbrone, M. A., Jr., and García-Cardeña, G. (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis, Circ. Res., 118, 620-636, https://doi.org/10.1161/CIRCRESAHA.115.306301.
  32. Mundi, S., Massaro, M., Scoditti, E., Carluccio, M. A., van Hinsbergh, V. W. M., Iruela-Arispe, M. L., and De Caterina, R. (2018) Endothelial permeability, LDL deposition, and cardiovascular risk factors – a review, Cardiovasc. Res., 114, 35-52, https://doi.org/10.1093/cvr/cvx226.
  33. Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., Tokgözoğlu, L., and Lewis, E. F. (2019) Atherosclerosis, Nat. Rev. Dis. Primers, 5, 56, https://doi.org/10.1038/s41572-019-0106-z.
  34. Tamargo, I. A., Baek, K. I., Kim, Y., Park, C., and Jo, H. (2023) Flow-induced reprogramming of endothelial cells in atherosclerosis, Nat. Rev. Cardiol., 20, 738-753, https://doi.org/10.1038/s41569-023-00883-1.
  35. Wang, X., Shen, Y., Shang, M., Liu, X., and Munn, L. L. (2023) Endothelial mechanobiology in atherosclerosis, Cardiovasc. Res., 119, 1656-1675, https://doi.org/10.1093/cvr/cvad076.
  36. Giorgi, C., Marchi, S., and Pinton, P. (2018) The machineries, regulation and cellular functions of mitochondrial calcium, Nat. Rev. Mol. Cell Biol., 19, 713-730, https://doi.org/10.1038/s41580-018-0052-8.
  37. Walkon, L. L., Strubbe-Rivera, J. O., and Bazil, J. N. (2022) Calcium overload and mitochondrial metabolism, Biomolecules, 12, 1891, https://doi.org/10.3390/biom12121891.
  38. De Nicolo, B., Cataldi-Stagetti, E., Diquigiovanni, C., and Bonora, E. (2023) Calcium and reactive oxygen species signaling interplays in cardiac physiology and pathologies, Antioxidants (Basel), 12, 353, https://doi.org/10.3390/antiox12020353.
  39. Werner, L. E., and Wagner, U. (2023) Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation, Front. Physiol., 13, 1078569, https://doi.org/10.3389/fphys.2022.1078569.
  40. Mukai, H., Miura, Y., Kotani, K., Kotoda, A., Kurosu, H., Yamada, T., Kuro-O, M., and Iwazu, Y. (2022) The effects for inflammatory responses by CPP with different colloidal properties in hemodialysis patients, Sci. Rep., 12, 21856, https://doi.org/10.1038/s41598-022-26166-2.
  41. Bojic, M., Cejka, D., Bielesz, B., and Schernthaner, G. H. (2023) Secondary calciprotein particle size is associated with patient mortality in peripheral artery disease, Atherosclerosis, 370, 12-17, https://doi.org/10.1016/ j.atherosclerosis.2023.02.006.
  42. Chen, W., Anokhina, V., Dieudonne, G., Abramowitz, M. K., Kashyap, R., Yan, C., Wu, T. T., de Mesy Bentley, K. L., Miller, B. L., and Bushinsky, D. A. (2019) Patients with advanced chronic kidney disease and vascular calcification have a large hydrodynamic radius of secondary calciprotein particles, Nephrol. Dial. Transplant., 34, 992-1000, https://doi.org/10.1093/ndt/gfy117.
  43. Chen, W., Fitzpatrick, J., Monroy-Trujillo, J. M., Sozio, S. M., Jaar, B. G., Estrella, M. M., Serrano, J., Anokhina, V., Miller, B. L., Melamed, M. L., Bushinsky, D. A., and Parekh, R. S. (2021) Associations of serum calciprotein particle size and transformation time with arterial calcification, arterial stiffness, and mortality in incident hemodialysis patients, Am. J. Kidney Dis., 77, 346-354, https://doi.org/10.1053/j.ajkd.2020.05.031.
  44. Feenstra, L., Reijrink, M., Pasch, A., Smith, E. R., Visser, L. M., Bulthuis, M., Lodewijk, M. E., Mastik, M. F., Greuter, M. J. W., Slart, R. H. J. A., Mulder, D. J., Pol, R. A., Te Velde-Keyzer, C. A., Krenning, G., Hillebrands, J. L., and TransplantLines Investigators (2024) Calciprotein particle counts associate with vascular remodelling in chronic kidney disease, Cardiovasc. Res., 120, 1953-1966, https://doi.org/10.1093/cvr/cvae164.
  45. Zeper, L. W., Smith, E. R., Ter Braake, A. D., Tinnemans, P. T., de Baaij, J. H. F., and Hoenderop, J. G. J. (2023) Calciprotein particle synthesis strategy determines in vitro calcification potential, Calcif. Tissue Int., 112, 103-117, https://doi.org/10.1007/s00223-022-01036-1.
  46. Mencke, R., Al Ali, L., de Koning, M. L. Y., Pasch, A., Minnion, M., Feelisch, M., van Veldhuisen, D. J., van der Horst, I. C. C., Gansevoort, R. T., Bakker, S. J. L., de Borst, M. H., van Goor, H., van der Harst, P., Lipsic, E., and Hillebrands, J. L. (2024) Serum calcification propensity is increased in myocardial infarction and hints at a pathophysiological role independent of classical cardiovascular risk factors, Arterioscler. Thromb. Vasc. Biol., 44, 1884-1894, https://doi.org/10.1161/ATVBAHA.124.320974.
  47. Mori, K., Shoji, T., Nakatani, S., Uedono, H., Ochi, A., Yoshida, H., Imanishi, Y., Morioka, T., Tsujimoto, Y., Kuro-O, M., and Emoto, M. (2024) Differential associations of fetuin-A and calcification propensity with cardiovascular events and subsequent mortality in patients undergoing hemodialysis, Clin. Kidney J., 17, sfae042, https://doi.org/10.1093/ckj/sfae042.
  48. Van der Vaart, A., Eelderink, C., van Goor, H., Hillebrands, J. L., Te Velde-Keyzer, C. A., Bakker, S. J. L., Pasch, A., van Dijk, P. R., Laverman, G. D., and de Borst, M. H. (2024) Serum T50 predicts cardiovascular mortality in individuals with type 2 diabetes: a prospective cohort study, J. Intern. Med., 295, 748-758, https://doi.org/10.1111/joim.13781.
  49. Miura, M., Miura, Y., Iwazu, Y., Mukai, H., Sugiura, T., Suzuki, Y., Kato, M., Kano, M., Nagata, D., Shiizaki, K., Kurosu, H., and Kuro-O, M. (2023) Removal of calciprotein particles from the blood using an adsorption column improves prognosis of hemodialysis miniature pigs, Sci. Rep., 13, 15026, https://doi.org/10.1038/s41598-023-42273-0.
  50. Kawakami, K., Ohya, M., Yashiro, M., Sonou, T., Yamamoto, S., Nakashima, Y., Yano, T., Tanaka, Y., Ishida, K., Kobashi, S., Shigematsu, T., and Araki, S. I. (2023) Bisphosphonate FYB-931 prevents high phosphate-induced vascular calcification in rat aortic rings by altering the dynamics of the transformation of calciprotein particles, Calcif. Tissue Int., 113, 216-228, https://doi.org/10.1007/s00223-023-01086-z.
  51. Rossi, A., Pizzo, P., and Filadi, R. (2019) Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics, Biochim. Biophys. Acta Mol. Cell Res., 1866, 1068-1078, https://doi.org/10.1016/j.bbamcr.2018.10.016.
  52. Park, C. J., and Shin, R. (2022) Calcium channels and transporters: roles in response to biotic and abiotic stresses, Front. Plant Sci., 13, 964059, https://doi.org/10.3389/fpls.2022.964059.
  53. Harlacher, E., Wollenhaupt, J., Baaten, C. C. F. M. J., and Noels, H. (2022) Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: a systematic review, Int. J. Mol. Sci., 23, 531, https://doi.org/10.3390/ijms23010531.
  54. Roumeliotis, S., Mallamaci, F., and Zoccali, C. (2020) Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: a 2020 update, J. Clin. Med., 9, 2359, https://doi.org/10.3390/jcm9082359.
  55. Kutikhin, A. G., Shishkova, D. K., Velikanova, E. A., Sinitsky, M. Y., Sinitskaya, A. V., and Markova, V. E. (2022) Endothelial dysfunction in the context of blood-brain barrier modeling, J. Evol. Biochem. Physiol., 58, 781-806, https://doi.org/10.1134/S0022093022030139.
  56. Ferrucci, L., and Fabbri, E. (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty, Nat. Rev. Cardiol., 15, 505-522, https://doi.org/10.1038/s41569-018-0064-2.
  57. Liberale, L., Montecucco, F., Tardif, J. C., Libby, P., and Camici, G. G. (2020) Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease, Eur. Heart J., 41, 2974-2982, https://doi.org/10.1093/eurheartj/ehz961.
  58. Walker, K. A., Basisty, N., Wilson, D. M., 3rd, and Ferrucci, L. (2022) Connecting aging biology and inflammation in the omics era, J. Clin. Invest., 132, e158448, https://doi.org/10.1172/JCI158448.
  59. Li, X., Li, C., Zhang, W., Wang, Y., Qian, P., and Huang, H. (2023) Inflammation and aging: signaling pathways and intervention therapies, Signal Transduct. Target Ther., 8, 239, https://doi.org/10.1038/s41392-023-01502-8.
  60. Kuro-O, M. (2021) Phosphate as a pathogen of arteriosclerosis and aging, J. Atheroscler. Thromb., 28, 203-213, https://doi.org/10.5551/jat.RV17045.
  61. Tiong, M. K., Holt, S. G., Ford, M. L., and Smith, E. R. (2022) Serum calciprotein monomers and chronic kidney disease progression, Am. J. Nephrol., 53, 806-815, https://doi.org/10.1159/000526609.
  62. Kuro-O, M. (2021) Klotho and calciprotein particles as therapeutic targets against accelerated ageing, Clin. Sci. (Lond.), 135, 1915-1927, https://doi.org/10.1042/CS20201453.
  63. Gelli, R., Ridi, F., and Baglioni, P. (2019) The importance of being amorphous: calcium and magnesium phosphates in the human body, Adv. Colloid Interface Sci., 269, 219-235, https://doi.org/10.1016/j.cis.2019.04.011.
  64. Pasch, A., Jahnen-Dechent, W., and Smith, E. R. (2018) Phosphate, calcification in blood, and mineral stress: the physiologic blood mineral buffering system and its association with cardiovascular risk, Int. J. Nephrol., 2018, 9182078, https://doi.org/10.1155/2018/9182078.
  65. Di Marco, G. S., Hausberg, M., Hillebrand, U., Rustemeyer, P., Wittkowski, W., Lang, D., and Pavenstädt, H. (2008) Increased inorganic phosphate induces human endothelial cell apoptosis in vitro, Am. J. Physiol. Renal Physiol., 294, F1381-F1387, https://doi.org/10.1152/ajprenal.00003.2008.
  66. Shuto, E., Taketani, Y., Tanaka, R., Harada, N., Isshiki, M., Sato, M., Nashiki, K., Amo, K., Yamamoto, H., Higashi, Y., Nakaya, Y., and Takeda, E. (2009) Dietary phosphorus acutely impairs endothelial function, J. Am. Soc. Nephrol., 20, 1504-1512, https://doi.org/10.1681/ASN.2008101106.
  67. Peng, A., Wu, T., Zeng, C., Rakheja, D., Zhu, J., Ye, T., Hutcheson, J., Vaziri, N. D., Liu, Z., Mohan, C., and Zhou, X. J. (2011) Adverse effects of simulated hyper- and hypo-phosphatemia on endothelial cell function and viability, PLoS One, 6, e23268, https://doi.org/10.1371/journal.pone.0023268.
  68. Yamada, S., Tokumoto, M., Tatsumoto, N., Taniguchi, M., Noguchi, H., Nakano, T., Masutani, K., Ooboshi, H., Tsuruya, K., and Kitazono, T. (2014) Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia, Am. J. Physiol. Renal Physiol., 306, F1418-F1428, https://doi.org/ 10.1152/ajprenal.00633.2013.
  69. Voelkl, J., Egli-Spichtig, D., Alesutan, I., and Wagner, C. A. (2021) Inflammation: a putative link between phosphate metabolism and cardiovascular disease, Clin. Sci. (Lond.), 135, 201-227, https://doi.org/10.1042/CS20190895.
  70. Ding, M., Zhang, Q., Zhang, M., Jiang, X., Wang, M., Ni, L., Gong, W., Huang, B., and Chen, J. (2022) Phosphate overload stimulates inflammatory reaction via PiT-1 and induces vascular calcification in uremia, J. Ren. Nutr., 32, 178-188, https://doi.org/10.1053/j.jrn.2021.03.008.
  71. Hetz, R., Beeler, E., Janoczkin, A., Kiers, S., Li, L., Willard, B. B., Razzaque, M. S., and He, P. (2022) Excessive inorganic phosphate burden perturbed intracellular signaling: quantitative proteomics and phosphoproteomics analyses, Front. Nutr., 8, 765391, https://doi.org/10.3389/fnut.2021.765391.
  72. Heiss, A., Eckert, T., Aretz, A., Richtering, W., van Dorp, W., Schäfer, C., and Jahnen-Dechent, W. (2008) Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles, J. Biol. Chem., 283, 14815-14825, https://doi.org/10.1074/jbc.M709938200.
  73. Dridi, H., Kushnir, A., Zalk, R., Yuan, Q., Melville, Z., and Marks, A. R. (2020) Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target, Nat. Rev. Cardiol., 17, 732-747, https://doi.org/10.1038/s41569-020-0394-8.
  74. Arnold, A., Dennison, E., Kovacs, C. S., Mannstadt, M., Rizzoli, R., Brandi, M. L., Clarke, B., and Thakker, R. V. (2021) Hormonal regulation of biomineralization, Nat. Rev. Endocrinol., 17, 261-275, https://doi.org/10.1038/s41574-021-00477-2.
  75. Collins, M. T., Marcucci, G., Anders, H. J., Beltrami, G., Cauley, J. A., Ebeling, P. R., Kumar, R., Linglart, A., Sangiorgi, L., Towler, D. A., Weston, R., Whyte, M. P., Brandi, M. L., Clarke, B., and Thakker, R. V. (2022) Skeletal and extraskeletal disorders of biomineralization, Nat. Rev. Endocrinol., 18, 473-489, https://doi.org/10.1038/ s41574-022-00682-7.
  76. Shishkova, D. K., Sinitskaya, A. V., Sinitsky, M. Y., Matveeva, V. G., Velikanova, E. A., Markova, V. E., and Kutikhin, A. G. (2022) Spontaneous endothelial-to-mesenchymal transition in human primary umbilical vein endothelial cells, Compl. Iss. Cardiovasc. Dis., 11, 97-114, https://doi.org/10.17802/2306-1278-2022-11-3-97-114.
  77. Bogdanov, L. A., Velikanova, E. A., Kanonykina, A. Y., Frolov, A. V., Shishkova, D. K., Lazebnaya, A. I., and Kutikhin, A. G. (2022) Vascular smooth muscle cell contractile proteins as universal markers of vessels of microcirculatory bed, Compl. Iss. Cardiovasc. Dis., 11, 162-176, https://doi.org/10.17802/2306-1278-2022-11-3-162-176.
  78. Wang, B., Han, J., Elisseeff, J. H., and Demaria, M. (2024) The senescence-associated secretory phenotype and its physiological and pathological implications, Nat. Rev. Mol. Cell Biol., 25, 958-978, https://doi.org/10.1038/s41580-024-00727-x.
  79. Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G., and Nattel, S. (2022) The role of cellular senescence in cardiac disease: basic biology and clinical relevance, Nat. Rev. Cardiol., 19, 250-264, https://doi.org/10.1038/ s41569-021-00624-2.
  80. Di Micco, R., Krizhanovsky, V., Baker, D., and d’Adda di Fagagna, F. (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities, Nat. Rev. Mol. Cell Biol., 22, 75-95, https://doi.org/10.1038/s41580-020-00314-w.
  81. Ewence, A. E., Bootman, M., Roderick, H. L., Skepper, J. N., McCarthy, G., Epple, M., Neumann, M., Shanahan, C. M., and Proudfoot, D. (2008) Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization, Circ. Res., 103, e28-e34, https://doi.org/10.1161/CIRCRESAHA.108.181305.
  82. Jäger, E., Murthy, S., Schmidt, C., Hahn, M., Strobel, S., Peters, A., Stäubert, C., Sungur, P., Venus, T., Geisler, M., Radusheva, V., Raps, S., Rothe, K., Scholz, R., Jung, S., Wagner, S., Pierer, M., Seifert, O., Chang, W., Estrela-Lopis, I., Raulien, N., Krohn, K., Sträter, N., Hoeppener, S., Schöneberg, T., Rossol, M., and Wagner, U. (2020) Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis, Nat. Commun., 11, 4243, https://doi.org/10.1038/s41467-020-17749-6.
  83. Tournis, S., Makris, K., Cavalier, E., and Trovas, G. (2020) Cardiovascular risk in patients with primary hyperparathyroidism, Curr. Pharm. Des., 26, 5628-5636, https://doi.org/10.2174/1381612824999201105165642.
  84. Bkaily, G., and Jacques, D. (2023) Calcium homeostasis, transporters, and blockers in health and diseases of the cardiovascular system, Int. J. Mol. Sci., 24, 8803, https://doi.org/10.3390/ijms24108803.
  85. Minisola, S., Arnold, A., Belaya, Z., Brandi, M. L., Clarke, B. L., Hannan, F. M., Hofbauer, L. C., Insogna, K. L., Lacroix, A., Liberman, U., Palermo, A., Pepe, J., Rizzoli, R., Wermers, R., and Thakker, R. V. (2022) Epidemiology, pathophysiology, and genetics of primary hyperparathyroidism, J. Bone Miner. Res., 37, 2315-2329, https://doi.org/10.1002/jbmr.4665.
  86. Tonon, C. R., Silva, T. A. A. L., Pereira, F. W. L., Queiroz, D. A. R., Junior, E. L. F., Martins, D., Azevedo, P. S., Okoshi, M. P., Zornoff, L. A. M., de Paiva, S. A. R., Minicucci, M. F., and Polegato, B. F. (2022) A review of current clinical concepts in the pathophysiology, etiology, diagnosis, and management of hypercalcemia, Med. Sci. Monit., 28, e935821, https://doi.org/10.12659/MSM.935821.
  87. Lang, I. M., and Schleef, R. R. (1996) Calcium-dependent stabilization of type I plasminogen activator inhibitor within platelet alpha-granules, J. Biol. Chem., 271, 2754-2761, https://doi.org/10.1074/jbc.271.5.2754.
  88. Liu, Q., Möller, U., Flügel, D., and Kietzmann, T. (2004) Induction of plasminogen activator inhibitor I gene expression by intracellular calcium via hypoxia-inducible factor-1, Blood, 104, 3993-4001, https://doi.org/10.1182/blood-2004-03-1017.
  89. Peiretti, F., Fossat, C., Anfosso, F., Alessi, M. C., Henry, M., Juhan-Vague, I., and Nalbone, G. (1996) Increase in cytosolic calcium upregulates the synthesis of type 1 plasminogen activator inhibitor in the human histiocytic cell line U937, Blood, 87, 162-173, https://doi.org/10.1182/blood.V87.1.162.162.
  90. Heiss, A., DuChesne, A., Denecke, B., Grötzinger, J., Yamamoto, K., Renné, T., and Jahnen-Dechent, W. (2003) Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A: formation of colloidal calciprotein particles, J. Biol. Chem., 278, 13333-13341, https://doi.org/10.1074/jbc.M210868200.
  91. Schäfer, C., Heiss, A., Schwarz, A., Westenfeld, R., Ketteler, M., Floege, J., Müller-Esterl, W., Schinke, T., and Jahnen-Dechent, W. (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification, J. Clin. Invest., 112, 357-366, https://doi.org/10.1172/JCI17202.
  92. Heiss, A., Jahnen-Dechent, W., Endo, H., and Schwahn, D. (2007) Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids, Biointerphases, 2, 16-20, https://doi.org/10.1116/1.2714924.
  93. Rochette, C. N., Rosenfeldt, S., Heiss, A., Narayanan, T., Ballauff, M., and Jahnen-Dechent, W. (2009) A shielding topology stabilizes the early stage protein-mineral complexes of fetuin-A and calcium phosphate: a time-resolved small-angle X-ray study, Chembiochem, 10, 735-740, https://doi.org/10.1002/cbic.200800719.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Application
Download (346KB)
3. Fig. 1. Micrographs of albumin CPCs (CPC-A), fetuin CPCs (CPC-F), CPCs from atherosclerotic plaques (CPC-B) and serum (CPC-S), obtained by scanning electron microscopy. Secondary electron mode; accelerating voltage – 10 kV (CPC-A) or 30 kV (other types of CPCs); magnification ×30,000; scale bar – 1 μm

Download (997KB)
4. Fig. 2. Increase in the concentration of ionized calcium (Ca2+) in the culture medium (a) and rat blood serum (b) upon addition of increasing amounts of CaCl2. Abscissa axis – concentration of added calcium; ordinate axis – increase in molar concentration of Ca2+ relative to the control medium or serum without added calcium. A 10% increase in the Ca2+ concentration (blue dotted line) was achieved by adding 10 μg calcium per 1 ml of medium or serum (red circle).

Download (319KB)
5. Fig. 3. Internalization of FITC-labeled CPM (FITC-CPM) and CPC (FITC-CPC) by HCAEC and HITAEC.

Download (991KB)
6. Fig. 4. Bright-field microscopy (BF-A/BF-A, top) and phase-contrast microscopy (BF-F/BF-F, bottom) of HCAEC (left) and HITAEC (right) incubated with PBS (control), free Ca2+ ions, BF (BF-A, top; BF-F, bottom) or BF (BF-A, top; BF-F, bottom) (10 μg calcium per 1 ml serum-free culture medium) for 24 h; magnification ×200; scale bar – 100 μm

Download (935KB)
7. Fig. 5. Cytotoxicity test after incubation of HCAEC (left panels) and HITAEC (right panels) with PBS (control), free Ca2+ ions (Ca2+-A or Ca2+-P), CPM (CPM-A or CPM-P) or CPC (CPC-A or CPC-P) (10 μg calcium per 1 ml of serum-free culture medium) for 24 h.

Download (993KB)
8. Fig. 6. Assessment of IL-6 (upper panel), IL-8 (middle panel) and MCP-1/CCL2 (lower panel) levels in non-concentrated serum-free culture medium from HCAEC and HITAEC incubated with PBS (control; black), free Ca2+ (blue), CPM-A (green) and CPC-A (red) (10 μg calcium per 1 ml medium) for 24 h (ELISA).

Download (374KB)
9. Fig. 7. Assessment of IL-6 (upper panel), IL-8 (middle panel) and MCP-1/CCL2 (lower panel) levels in non-concentrated serum-free culture medium from HCAEC and HITAEC incubated with PBS (control; black), free Ca2+ (blue), KPM-F (green) and KPC-F (red) (10 μg calcium per 1 ml medium) for 24 h (ELISA).

Download (366KB)
10. Fig. 8. Cytokine profiling in concentrated (3-fold) serum-free culture medium from HCAEC (upper panel) and HITAEC (lower panel) incubated with PBS (control), free Ca2+ ions, CPM-A or CPC-A (10 μg calcium per 1 ml of culture medium) for 24 h (dot blot).

Download (495KB)
11. Fig. 9. Cytokine profiling in concentrated (7-fold) serum-free culture medium from human monocytes incubated with PBS (control), free Ca2+ ions, CPM-A and CPC-A (10 μg calcium per 1 ml of culture medium) for 24 h (dot blotting).

Download (353KB)
12. Fig. 10. Profiling of cytokines in rat serum after intravenous administration of FSBD (control), free Ca2+ ions, CPM-A and CPC-A (10 μg calcium per 1 ml of blood) for 1 hour.

Download (955KB)

Copyright (c) 2025 Russian Academy of Sciences