Determination of SARS-CoV-2 main protease (Mpro) activity based on electrooxidation of the tyrosine residue of a model peptide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The proposed approach for determining the catalytic activity of SARS-CoV-2 main protease (Mpro) is based on the registration of the peak area of the electrochemical oxidation of the tyrosine residue of the model peptide substrate CGGGAVLQSGY immobilized on the surface of a graphite screen-printed electrode (SPE) modified with gold nanoparticles (AuNP). The AuNP were obtained by electrosynthesis. The steady state kinetic parameters of Mpro towards the model peptide were determined: catalytic constant (kcat) was (3.1 ± 0.1)·10–3 s–1; Michaelis constant (KM) was (358 ± 32)·10–9 M; catalytic efficiency (kcat/KM) was 8659 s–1/M. The limit of detection (LOD) determined for Mpro using the proposed electrochemical system was 44 nM. The proposed approach is a promising tool to search for new Mpro inhibitors as drugs for the treatment of coronavirus infections.

Full Text

Restricted Access

About the authors

T. A. Filippova

Institute of Biomedical Chemistry; N. I. Pirogov Russian National Research Medical University

Email: alexeykuzikov@gmail.com
Russian Federation, 119121 Moscow; 117513 Moscow

R. A. Masamrekh

Institute of Biomedical Chemistry; N. I. Pirogov Russian National Research Medical University

Email: alexeykuzikov@gmail.com
Russian Federation, 119121 Moscow; 117513 Moscow

T. E. Farafonova

Institute of Biomedical Chemistry

Email: alexeykuzikov@gmail.com
Russian Federation, 119121 Moscow

Yu. Yu. Khudoklinova

N. I. Pirogov Russian National Research Medical University

Email: alexeykuzikov@gmail.com
Russian Federation, 117513 Moscow

V. V. Shumyantseva

Institute of Biomedical Chemistry; N. I. Pirogov Russian National Research Medical University

Email: alexeykuzikov@gmail.com
Russian Federation, 119121 Moscow; 117513 Moscow

S. A. Moshkovskii

N. I. Pirogov Russian National Research Medical University; Max Planck Institute for Multidisciplinary Sciences

Email: alexeykuzikov@gmail.com
Russian Federation, 117513 Moscow; 37077 Göttingen, Germany

A. V. Kuzikov

Institute of Biomedical Chemistry; N. I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: alexeykuzikov@gmail.com
Russian Federation, 119121 Moscow; 117513 Moscow

References

  1. Yan, H., Zhang, R., Yan, G., Liu, Z., Liu, X., Liu, X., and Chen, Y. (2023) Production of a versatile SARS-CoV-2 main protease biosensor based on a dimerization-dependent red fluorescent protein, J. Med. Virol., 95, e28342, https://doi.org/10.1002/jmv.28342.
  2. Hu, Q., Xiong, Y., Zhu, G.-H., Zhang, Y.-N., Zhang, Y.-W., Huang, P., and Ge, G.-B. (2022) The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19, MedComm, 3, e151, https://doi.org/10.1002/mco2.151.
  3. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., and Yang, H. (2020), Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, 582, 289-293, https://doi.org/10.1038/s41586-020-2223-y.
  4. Jin, Z., Mantri, Y., Retout, M., Cheng, Y., Zhou, J., Jorns, A., Fajtova, P., Yim, W., Moore, C., Xu, M., Creyer, M. N., Borum, R. M., Zhou, J., Wu, Z., He, T., Penny, W. F., O’Donoghue, A. J., and Jokerst, J. V. (2022) A charge-switchable zwitterionic peptide for rapid detection of SARS-CoV-2 main protease, Angew. Chem., 134, e202112995, https://doi.org/10.1002/anie.202112995.
  5. Chan, H. T. H., Moesser, M. A., Walters, R. K., Malla, T. R., Twidale, R. M., John, T., Deeks, H. M., Johnston-Wood, T., Mikhailov, V., Sessions, R. B., Dawson, W., Salah, E., Lukacik, P., Strain-Damerell, C., Owen, C. D., Nakajima, T., Świderek, K., Lodola, A., Moliner, V., et al. (2021) Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding, Chem. Sci., 12, 13686-13703, https://doi.org/10.1039/d1sc03628a.
  6. Ullrich, S., and Nitsche, C. (2020) The SARS-CoV-2 main protease as drug target, Bioorg. Med. Chem. Lett., 30, 127377, https://doi.org/10.1016/j.bmcl.2020.127377.
  7. Li, F., Fang, T., Guo, F., Zhao, Z., and Zhang, J. (2023) Comprehensive understanding of the kinetic behaviors of main protease from SARS-CoV-2 and SARS-CoV: new data and comparison to published parameters, Molecules, 28, 4605, https://doi.org/10.3390/molecules28124605.
  8. Antonopoulou, I., Sapountzaki, E., Rova, U., and Christakopoulos, P. (2022) Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds, Comput. Struct. Biotechnol., 20, 1306-1344, https://doi.org/10.1016/j.csbj.2022.03.009.
  9. Zhu, W., Xu, M., Chen, C. Z., Guo, H., Shen, M., Hu, X., Shinn, P., Klumpp-Thomas, C., Michael, S. G., and Zheng, W. (2020) Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening, ACS Pharmacol. Transl. Sci., 3, 1008-1016, https://doi.org/10.1021/acsptsci.0c00108.
  10. Parigger, L., Krassnigg, A., Schopper, T., Singh, A., Tappler, K., Köchl, K., Hetmann, M., Gruber, K., Steinkellner, G., and Gruber, C. C. (2022) Recent changes in the mutational dynamics of the SARS-CoV-2 main protease substantiate the danger of emerging resistance to antiviral drugs, Front. Med., 9, 1061142, https://doi.org/10.3389/fmed.2022.1061142.
  11. Eberle, R. J., Sevenich, M., Gering, I., Scharbert, L., Strodel, B., Lakomek, N. A., Santur, K., Mohrlüder, J., Coronado, M. A., and Willbold, D. (2023) Discovery of all-d-peptide inhibitors of SARS-CoV-2 3C-like protease, ACS Chem. Biol., 18, 315-330, https://doi.org/10.1021/acschembio.2c00735.
  12. Huang, C., Shuai, H., Qiao, J., Hou, Y., Zeng, R., Xia, A., Xie, L., Fang, Z., Li, Y., Yoon, C., Huang, Q., Hu, B., You, J., Quan, B., Zhao, X., Guo, N., Zhang, S., Ma, R., Zhang, J., Wang, Y., and Yang, S. (2023) A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants, Signal Transduct. Target. Ther., 8, 128, https://doi.org/10.1038/s41392-023-01392-w.
  13. Chatterjee, S., Bhattacharya, M., Dhama, K., Lee, S.-S., and Chakraborty, C. (2023) Resistance to nirmatrelvir due to mutations in the Mpro in the subvariants of SARS-CoV-2 Omicron: another concern? Mol. Ther. Nucleic Acids, 32, 263-266, https://doi.org/10.1016/j.omtn.2023.03.013.
  14. Rodriguez-Rios, M., Megia-Fernandez, A., Norman, D. J., and Bradley, M. (2022) Peptide probes for proteases – innovations and applications for monitoring proteolytic activity, Chem. Soc. Rev., 51, 2081-2120, https://doi.org/10.1039/d1cs00798j.
  15. Feng, Y., Liu, G., La, M., and Liu, L. (2022) Colorimetric and electrochemical methods for the detection of SARS-CoV-2 main protease by peptide-triggered assembly of gold nanoparticles, Molecules, 27, 615, https://doi.org/10.3390/molecules27030615.
  16. Zhang, Q., Liu, G., and Ou, L. (2022) Electrochemical biosensor for the detection of SARS-CoV-2 main protease and its inhibitor ebselen, Int. J. Electrochem. Sci., 17, 220421, https://doi.org/10.20964/2022.04.19.
  17. Legare, S., Heide, F., Bailey-Elkin, B. A., and Stetefeld, J. (2022) Improved SARS-CoV-2 main protease high-throughput screening assay using a 5-carboxyfluorescein substrate, J. Biol. Chem., 298, 101739, https://doi.org/10.1016/j.jbc.2022.101739.
  18. Escobar, V., Scaramozzino, N., Vidic, J., Buhot, A., Mathey, R., Chaix, C., and Hou, Y. (2023) Recent advances on peptide-based biosensors and electronic noses for foodborne pathogen detection, Biosensors, 13, 258, https://doi.org/10.3390/bios13020258.
  19. Filippova, T. A., Masamrekh, R. A., Khudoklinova, Y. Y., Shumyantseva, V. V., and Kuzikov, A. V. (2024) The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity, Biochimie, 222, 169-194, https://doi.org/10.1016/j.biochi.2024.03.006.
  20. Zambry, N. S., Obande, G. A., Khalid, M. F., Bustami, Y., Hamzah, H. H., Awang, M. S., Aziah, I., and Manaf, A. A. (2022) Utilizing electrochemical-based sensing approaches for the detection of SARS-CoV-2 in clinical samples: a review, Biosensors, 12, 473, https://doi.org/10.3390/bios12070473.
  21. Lipińska, W., Grochowska, K., and Siuzdak, K. (2021) Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors, Nanomaterials, 11, 1156, https://doi.org/10.3390/nano11051156.
  22. Sanko, V., and Kuralay, F. (2023) Label-free electrochemical biosensor platforms for cancer diagnosis: recent achievements and challenges, Biosensors, 13, 333, https://doi.org/10.3390/bios13030333.
  23. Brabec, V., and Mornstein, V. (1980) Electrochemical behaviour of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions, Biochim. Biophys. Acta Protein Struct., 625, 43-50, https://doi.org/10.1016/0005-2795(80)90106-3.
  24. Brabec, V., and Mornstein, V. (1980) Electrochemical behaviour of proteins at graphite electrodes. II. Electrooxidation of amino acids, Biophys. Chem., 12, 159-165, https://doi.org/10.1016/0301-4622(80)80048-2.
  25. Reynaud, J. A., Malfoy, B., and Bere, A. (1980) The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes, J. Electroanal. Chem. Interfacial Electrochem., 116, 595-606, https://doi.org/10.1016/S0022-0728(80)80281-6.
  26. Reynaud, J. A., Malfoy, B., and Canesson, P. (1980) Electrochemical investigations of amino acids at solid electrodes, J. Electroanal. Chem. Interfacial Electrochem., 114, 195-211, https://doi.org/10.1016/S0022-0728(80)80447-5.
  27. Shumyantseva, V. V., Suprun, E. V., Bulko, T. V., and Archakov, A. I. (2014) Electrochemical methods for detection of post-translational modifications of proteins, Biosens. Bioelectron., 61, 131-139, https://doi.org/10.1016/j.bios.2014.05.001.
  28. Filippova, T. A., Masamrekh, R. A., Shumyantseva, V. V., Latsis, I. A., Farafonova, T. E., Ilina, I. Y., Kanashenko, S. L., Moshkovskii, S. A., and Kuzikov, A. V. (2023) Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide, Talanta, 257, 124341, https://doi.org/10.1016/j.talanta.2023.124341.
  29. Hood, C. A., Fuentes, G., Patel, H., Page, K., Menakuru, M., and Park, J. H. (2008) Fast conventional Fmoc solid-phase peptide synthesis with HCTU, J. Pept. Sci., 14, 97-101, https://doi.org/10.1002/psc.921.
  30. Shumkov, A. A., Suprun, E. V., Shatinina, S. Z., Lisitsa, A. V., Shumyantseva, V. V., and Archakov, A. I. (2013) Gold and silver nanoparticles for electrochemical detection of cardiac troponin I based on stripping voltammetry, Bionanoscience, 3, 216-222, https://doi.org/10.1007/s12668-013-0090-9.
  31. Rusling, J. F., Wang, B., and Yun, S. (2008) Electrochemistry of redox enzymes, in Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, Wiley, pp. 39-85, https://doi.org/10.1002/9780470753842.ch2.
  32. Anne, A., Chovin, A., and Demaille, C. (2012) Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes, Langmuir, 28, 8804-8813, https://doi.org/10.1021/la301316r.
  33. Ucar, A., González-Fernández, E., Staderini, M., Avlonitis, N., Murray, A. F., Bradley, M., and Mount, A. R. (2020) Miniaturisation of a peptide-based electrochemical protease activity sensor using platinum microelectrodes, Analyst, 145, 975-982, https://doi.org/10.1039/c9an02321f.
  34. Paimard, G., Ghasali, E., and Baeza, M. (2023) Screen-printed electrodes: fabrication, modification, and biosensing applications, Chemosensors, 11, 113, https://doi.org/10.3390/chemosensors11020113.
  35. Icimoto, M. Y., Brito, A. M. M., Ramos, M. P. C., Oliveira, V., and Nantes-Cardoso, I. L. (2020) Increased stability of oligopeptidases immobilized on gold nanoparticles, Catalysts, 10, 78, https://doi.org/10.3390/catal10010078.
  36. Kamal, N. N. A., Anuar, N. S., Noordin, R., Rahumatullah, A., and Hamzah, H. H. (2022) Electrodeposited gold nanoparticle (AuNP)-film as a nanoplatform for a label-free electrochemical strongyloidiasis immunosensor, J. Electrochem. Soc., 169, 106514, https://doi.org/10.1149/1945-7111/ac9434.
  37. Soldatkin, O. O., Soldatkina, O. V., Piliponskiy, I. I., Rieznichenko, L. S., Gruzina, T. G., Dybkova, S. M., Dzyadevych, S. V., and Soldatkin, A. P. (2022) Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors, Appl. Nanosci., 12, 995-1003, https://doi.org/10.1007/s13204-021-01807-6.
  38. Kilic, N. M., Singh, S., Keles, G., Cinti, S., Kurbanoglu, S., and Odaci, D. (2023) Novel approaches to enzyme-based electrochemical nanobiosensors, Biosensors, 13, 622, https://doi.org/10.3390/bios13060622.
  39. Zakharova, M. Y., Kuznetsova, A. A., Uvarova, V. I., Fomina, A. D., Kozlovskaya, L. I., Kaliberda, E. N., Kurbatskaia, I. N., Smirnov, I. V., Bulygin, A. A., Knorre, V. D., Fedorova, O. S., Varnek, A., Osolodkin, D. I., Ishmukhametov, A. A., et al. (2021) Pre-steady-state kinetics of the SARS-CoV-2 main protease as a powerful tool for antiviral drug discovery, Front. Pharmacol., 12, 773198, https://doi.org/10.3389/fphar.2021.773198.
  40. Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Pawlik, B., Wang, X., Jochmans, D., Neyts, J., Młynarski, W., Hilgenfeld, R., and Drag, M. (2021) SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging, Nat. Chem. Biol., 17, 222-228, https://doi.org/10.1038/s41589-020-00689-z.
  41. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., and Hilgenfeld, R. (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, 368, 409-412, https://doi.org/10.1126/science.abb3405.
  42. Melano, I., Lo, Y.-C., and Su, W.-C. (2023) Characterization of host substrates of SARS-CoV-2 main protease, Front. Microbiol., 14, 1251705, https://doi.org/10.3389/fmicb.2023.1251705.
  43. Dey-Rao, R., Smith, G. R., Timilsina, U., Falls, Z., Samudrala, R., Stavrou, S., and Melendy, T. (2021) A fluorescence-based, gain-of-signal, live cell system to evaluate SARS-CoV-2 main protease inhibition, Antiviral Res., 195, 105183, https://doi.org/10.1016/j.antiviral.2021.105183.
  44. Hartini, Y., Saputra, B., Wahono, B., Auw, Z., Indayani, F., Adelya, L., Namba, G., and Hariono, M. (2021) Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus, Results Chem., 3, 100087, https://doi.org/10.1016/j.rechem.2020.100087.
  45. Park, J., and Kim, M. (2015) Strategies in protein immobilization on a gold surface, Appl. Sci. Converg. Technol., 24, 1-8, https://doi.org/10.5757/ASCT.2015.24.1.1.
  46. Gatto, E., and Venanzi, M. (2013) Self-assembled monolayers formed by helical peptide building blocks: a new tool for bioinspired nanotechnology, Polym. J., 45, 468-480, https://doi.org/10.1038/pj.2013.27.
  47. Snir, E., Amit, E., Friedler, A., and Yitzchaik, S. (2015) A highly sensitive square wave voltammetry based biosensor for kinase activity measurements, Biopolymers, 104, 515-520, https://doi.org/10.1002/bip.22653.
  48. Taraballi, F., Natalello, A., Campione, M., Villa, O., Doglia, S. M., Paleari, A., and Gelain, F. (2010) Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures, Front. Neuroeng., 3, 1161, https://doi.org/10.3389/neuro.16.001.2010.
  49. Suprun, E. V., Shumyantseva, V. V., and Archakov, A. I. (2014) Protein electrochemistry: application in medicine. A review, Electrochim. Acta, 140, 72-82, https://doi.org/10.1016/j.electacta.2014.03.089.
  50. Moulaee, K., and Neri, G. (2021) Electrochemical amino acid sensing: a review on challenges and achievements, Biosensors, 11, 502, https://doi.org/10.3390/bios11120502.
  51. Anderson, M. J., Song, Y., Fan, H., Wright, J. G., Ren, Z., Hua, D. H., Koehne, J. E., Meyyappan, M., and Li, J. (2020) Simultaneous, multiplex quantification of protease activities using a gold microelectrode array, Biosens. Bioelectron., 165, 112330, https://doi.org/10.1016/j.bios.2020.112330.
  52. Sondag, D., Merx, J., Rossing, E., Boltje, T. J., Löwik, D. W. P. M., Nelissen, F. H. T. M. van Geffen, van’t Veer, C., van Heerde, W. L., and Rutjes, F. P. J. T. (2022) Luminescent assay for the screening of SARS-CoV-2 Mpro inhibitors, Chembiochem, 23, e202200190, https://doi.org/10.1002/cbic.202200190.
  53. Xu, M., Zhou, J., Cheng, Y., Jin, Z., Clark, A. E., He, T., Yim, W., Li, Y., Chang, Y.-C., Wu, Z., Fajtová, P., O’Donoghue, A. J., Carlin, A. F., Todd, M. D., and Jokerst, J. V. (2022) A self-immolative fluorescent probe for selective detection of SARS-CoV-2 main protease, Anal. Chem., 94, 11728-11733, https://doi.org/10.1021/acs.analchem.2c02381.
  54. Gutiérrez, O. A., Salas, E., Hernández, Y., Lissi, E. A., Castrillo, G., Reyes, O., Garay, H., Aguilar, A., García, B., Otero, A., Chavez, M. A., and Duarte, C. A. (2002) An immunoenzymatic solid-phase assay for quantitative determination of HIV-1 protease activity, Anal. Biochem., 307, 18-24, https://doi.org/10.1016/s0003-2697(02)00009-x.
  55. Lee, J., Arrigan, D. W. M., and Silvester, D. S. (2016) Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes, Sensing BioSensing Res., 9, 38-44, https://doi.org/10.1016/j.sbsr.2016.05.006.
  56. Nashed, N. T., Aniana, A., Ghirlando, R., Chiliveri, S. C., and Louis, J. M. (2022) Modulation of the monomer-dimer equilibrium and catalytic activity of SARS-CoV-2 main protease by a transition-state analog inhibitor, Commun. Biol., 5, 160, https://doi.org/10.1038/s42003-022-03084-7.
  57. Rebetez, T. (2022) SARS-CoV-2 main protease: a kinetic approach, J. Phys. Chem. Biophys., 12, 331, https:// doi.org/10.35248/2161-0398.22.12.331.
  58. Davis, D. A., Bulut, H., Shrestha, P., Yaparla, A., Jaeger, H. K., Hattori, S.-I., Wingfield, P. T., Mieyal, J. J., Mitsuya, H., and Yarchoan, R. (2021) Regulation of the dimerization and activity of SARS-CoV-2 main protease through reversible glutathionylation of cysteine 300, MBio, 12, e0209421, https://doi.org/10.1128/mBio.02094-21.
  59. Sacco, M. D., Ma, C., Lagarias, P., Gao, A., Townsend, J. A., Meng, X., Dube, P., Zhang, X., Hu, Y., Kitamura, N., Hurst, B., et al. (2020) Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against Mpro and cathepsin L, Sci. Adv., 6, eabe0751, https://doi.org/10.1126/sciadv.abe0751.
  60. Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., Ceballos-Laita, L., Vega, S., Reyburn, H. T., Rizzuti, B., and Velazquez-Campoy, A. (2020) Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, Int. J. Biol. Macromol., 164, 1693-1703, https://doi.org/10.1016/j.ijbiomac.2020.07.235

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Proposed mechanism of electrochemical oxidation of tyrosine

Download (64KB)
3. Scheme 2. Fragment of a peptide cleaved by Mpro, where P1 is a glutamine residue

Download (13KB)
4. Fig. 1. Modification of PGE AuNPs obtained by electrosynthesis and immobilization of the model peptide CGGGAVLQSGY due to the formation of a chemical bond between the mercapto group of cysteine ​​and AuNPs. The arrow shows the cleavage site of the peptide under the action of Mpro

Download (251KB)
5. Fig. 2. Cyclic voltammograms of PGE/AuNPs after incubation with different concentrations of the model peptide CGGGAVLQSGY (0–6 mM) for 2 h at 4 °C. Measurements were performed in 60 μl of 0.1 M potassium phosphate buffer (pH 7.4) containing 50 mM NaCl. Scan rate was 50 mV/s. The arrow shows the scanning direction.

Download (272KB)
6. Fig. 3. Dependence of the surface concentration (G0) of the electroactive peptide CGGGAVLQSGY on its concentration in the solution applied to PGE/AuNPs with subsequent incubation for 2 h at 4 °C. The average values ​​from at least three replicate experiments are presented ± standard deviations.

Download (168KB)
7. Fig. 4. Cyclic voltammograms of PGE/AuNPs with immobilized model peptide CGGGAVLQSGY after incubation with different concentrations of Mpro (0–1500 nM) for 1200 s at 37 °C. Measurements were performed in 60 μl of 0.1 M potassium phosphate buffer (pH 7.4) containing 50 mM NaCl. Scan rate was 50 mV/s. The arrow shows the scanning direction.

Download (305KB)
8. Fig. 5. Dependences of the proportion of undigested peptide CGGGAVLQSGY (%) on the time of its incubation (t) with different concentrations of Mpro (0–1500 nM). The average values ​​from at least three replicates of the experiments are presented ± standard deviations.

Download (323KB)
9. Fig. 6. Dependence of the proportion of undigested peptide (%) on the logarithm of Mpro concentrations. The average values ​​from at least three replicate experiments are presented ± standard deviations.

Download (212KB)
10. Fig. 7. Dependences of the proportion of the cleaved model peptide CGGGAVLQSGY under the action of Mpro (θ) on the incubation time (t) with different enzyme concentrations (50–1500 nM). The average values ​​from at least three replicate experiments are presented ± standard deviations.

Download (269KB)
11. Fig. 8. Dependence of the effective constant (keff) on the concentration of Mpro applied to the surface of PGE/AuNPs with the immobilized peptide CGGGAVLQSGY. The average values ​​from at least three replicates of the experiments are presented ± standard deviations.

Download (181KB)

Copyright (c) 2025 Russian Academy of Sciences