Evaluation of the effect of inhibition of LRRK2 kinase activity on glucocerebrosidase activity on patient-specific cells from patients with Gaucher disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biallelic mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), lead to the development of a lysosomal storage disease, Gaucher disease (GD), and are also a high risk factor for a common neurodegenerative disease, Parkinson’s disease (PD). In most cases, mutations in the GBA1 gene are localized outside the active site and lead to a decrease in GCase activity due to a decrease in the efficiency of transport of the enzyme with an altered conformation into the lysosome. Drugs that are used to treat GD (enzyme replacement therapy) are not able to cross the blood-brain barrier and are not effective for the treatment of neuronal forms of GD or PD associated with mutations in the GBA1 gene (GBA1-PD). For the treatment of PD, drugs that inhibit the kinase activity of leucine-rich repeat kinase 2 (LRRK2) are currently undergoing clinical trials. It was previously shown that inhibition of LRRK2 kinase activity leads to an increase in GCase activity in patient-specific GBA1-PD cells. We first assessed the effect of the kinase activity inhibitor LRRK2 (MLi-2) on GCase activity in a primary culture of peripheral blood macrophages obtained from patients with type 1 GD. Assessment of GCase activity and its substrate levels in cells cultured with and without MLi-2 was performed using high-performance liquid chromatography coupled with tandem mass spectrometry. There was no effect of inhibition of LRRK2 activity on GCase activity in the group of patients with GD.

Full Text

Restricted Access

About the authors

T. S. Usenko

Petersburg Institute of Nuclear Physics Named after B. P. Konstantinov Research Center “Kurchatov Institute”; First St. Petersburg State Medical University Named after. acad. I.P. Pavlova

Author for correspondence.
Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 188300 Gatchina; 197022 St. Petersburg

K. S. Basharova

Petersburg Institute of Nuclear Physics Named after B. P. Konstantinov Research Center “Kurchatov Institute”

Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 188300 Gatchina

A. I. Bezrukova

Petersburg Institute of Nuclear Physics Named after B. P. Konstantinov Research Center “Kurchatov Institute”; First St. Petersburg State Medical University Named after. acad. I.P. Pavlova

Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 188300 Gatchina; 197022 St. Petersburg

V. A. Bezrukikh

National Medical Research Center Named after V. A. Almazov

Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 197341 St. Petersburg

G. V. Baydakova

Medical Genetic Research Center Named after acad. N. P. Bochkov

Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 115478 Moscow

E. Y. Zakharova

Medical Genetic Research Center Named after acad. N. P. Bochkov

Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 115478 Moscow

S. N. Pchelina

Petersburg Institute of Nuclear Physics Named after B. P. Konstantinov Research Center “Kurchatov Institute”; First St. Petersburg State Medical University Named after. acad. I.P. Pavlova

Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, 188300 Gatchina; 197022 St. Petersburg

References

  1. Stirnemann, J., Belmatoug, N., Camou, F., Serratrice, C., Froissart, R., Caillaud, C., Levade, T., Astudillo, L., Serratrice, J., Brassier, A., Rose, C., Billette de Villemeur, T., and Berger, M. G. (2017) A review of Gaucher disease pathophysiology, clinical presentation and treatments, Int. J. Mol. Sci., 18, 441, https://doi.org/10.3390/ijms18020441.
  2. Gupta, P., and Pastores, G. (2018) Pharmacological treatment of pediatric Gaucher disease, Expert Rev. Clin. Pharmacol., 11, 1183-1194, https://doi.org/10.1080/17512433.2018.1549486.
  3. Gupta, N., Oppenheim, I. M., Kauvar, E. F., Tayebi, N., and Sidransky, E. (2011) Type 2 Gaucher disease: phenotypic variation and genotypic heterogeneity, Blood Cells Mol. Dis., 46, 75-84, https://doi.org/10.1016/j.bcmd.2010.08.012.
  4. Parlar, S. C., Grenn, F. P., Kim, J. J., Baluwendraat, C., and Gan-Or, Z. (2023) Classification of GBA1 variants in Parkinson’s disease: the GBA1-PD browser, Mov. Disord., 38, 489-495, https://doi.org/10.1002/mds.29314.
  5. Emelyanov, A. K., Usenko, T. S., Tesson, C., Senkevich, K. A., Nikolaev, M. A., Miliukhina, I. V., Kopytova, A. E., Timofeeva, A. A., Yakimovsky, A. F., Lesage, S., Brice, A., and Pchelina, S. N. (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set, Neurobiol. Aging, 71, 267.e7-267.e10, https://doi.org/10.1016j.neurobiolaging.2018.06.027.
  6. Pchelina, S., Baydakova, G., Nikolaev, M., Senkevich, K., Emelyanov, A., Kopytova, A., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Berkovich, O., Fedotova, E., Illarioshkin, S., and Zakharova, E. (2018) Blood lysosphingolipids accumulation in patients with Parkinson’s disease with glucocerebrosidase 1 mutations, Mov. Disord., 33, 1325-1330, https://doi.org/10.1002/mds.27393.
  7. Kopytova, A. E., Usenko, T. S., Baydakova, G. V., Nikolaev, M. A., Senkevich, K. A., Izyumchenko, A. D., Tyurin, A. A., Miliukhina, I. V., Emelyanov, A. K., Zakharova, E. Y., and Pchelina, S. N. (2022) Could blood hexosylsphingosine be a marker for Parkinson’s disease linked with GBA1 mutations? Mov. Disord., 37, 1779-1781, https://doi.org/10.1002/mds.29132.
  8. Alcalay, R. N., Levy, O. A., Waters, C. C., Fahn, S., Ford, B., Kuo, S. H., Mazzoni, P., Pauciulo, M. W., Nichols, W. C., Gan-Or, Z., Rouleau, G. A., Chung, W. K., Wolf, P., Oliva, P., Keutzer, J., Marder, K., and Zhang, X. (2015) Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations, Brain, 138, 2648-2658, https://doi.org/10.1093/brain/awv179.
  9. Polo, G., Burlina, A. P., Kolamunnage, T. B., Zampieri, M., Dionisi-Vici, C., Strisciuglio, P., Zaninotto, M., Plebani, M., and Burlina, A. B. (2017) Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS, Clin. Chem. Lab. Med., 55, 403-414, https://doi.org/10.1515/cclm-2016-0340.
  10. Kopytova, A. E., Rychkov, G. N., Nikolaev, M. A., Baydakova, G. V., Cheblokov, A. A., Senkevich, K. A., Bogdanova, D. A., Bolshakova, O. I., Miliukhina, I. V., Bezrukikh, V. A., Salogub, G. N., Sarantseva, S. V., Usenko, T. C., Zakharova, E. Y., Emelyanov, A. K., and Pchelina, S. N. (2011) Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and parkinsonism, Parkinsonism Relat. Disord., 84, 112-121, https://doi.org/10.1016/j.parkreldis.2021.02.003.
  11. Kopytova, A. E., Rychkov, G. N., Cheblokov, A. A., Grigor’eva, E. V., Nikolaev, M. A., Yarkova, E. S., Sorogina, D. A., Ibatullin, F. M., Baydakova, G. V., Izyumchenko, A. D., Bogdanova, D. A., Boitsov, V. M., Rybakov, A. V., Miliukhina, I. V., Bezrukikh, V. A., Salogub, G. N., Zakharova, E. Y., Pchelina, S. N., and Emelyanov, A. K. (2023) Potential binding sites of pharmacological chaperone NCGC00241607 on mutant β-glucocerebrosidase and its efficacy on patient-derived cell cultures in Gaucher and Parkinson’s disease, Int. J. Mol. Sci., 24, 91-105, https://doi.org/10.3390/ijms24109105.
  12. Aflaki, E., Stubblefield, B. K., Maniwang, E., Lopez, G., Moaven, N., Goldin, E., Marugan, J., Patnaik, S., Dutra, A., Southall, N., Zheng, W., Tayebi, N., and Sidransky, E. (2014) Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs, Sci. Transl. Med., 6, 240ra73, https://doi.org/10.1126/scitranslmed.3008659.
  13. Liu, Z., Bryant, N., Kumaran, R., Beilina, A., Abeliovich, A., Cookson, M. R., and West, A. B. (2018) LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-Bound Rab7L1 to promote recruitment to the trans-Golgi network, Hum. Mol. Genet., 27, 385-395, https://doi.org/10.1093/hmg/ddx410.
  14. Vides, E. G., Adhikari, A., Chiang, C. Y., Lis, P., Purlyte, E., Limouse, C., Shumate, J. L., Spínola-Lasso, E., Dhekne, H. S., Alessi, D. R., and Pfeffer, S. R. (2022) A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation, Elife, 11, e79771, https://doi.org/10.7554/eLife.79771.
  15. Taymans, J. M., Fell, M., Greenamyre, T., Hirst, W. D., Mamais, A., Padmanabhan, S., Peter, I., Rideout, H., and Thaler, A. (2023) Perspective on the current state of the LRRK2 field, NPJ Parkinsons Dis., 9, 104, https://doi.org/10.1038/s41531-023-00544-7.
  16. Ysselstein, D., Nguyen, M., Young, T. J., Severino, A., Schwake, M., Merchant, K., and Krainc, D. (2019) LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson’s disease patients, Nat. Commun., 10, 5570, https://doi.org/10.1038/s41467-019-13413-w.
  17. Усенко Т. С., Башарова К. С., Безрукова А. И., Николаев М. А., Милюхина И. В., Байдакова Г. В., Захарова Е. Ю., Пчелина С. Н. (2022) Селективное ингибирование киназной активности LRRK2 как подход к терапии болезни Паркинсона, Мед. Генет., 21, 26-29, https://doi.org/10.25557/2073-7998.2022.12.26-29.
  18. Kedariti, M., Frattini, E., Baden, P., Cogo, S., Civiero, L., Ziviani, E., Zilio, G., Bertoli, F., Aureli, M., Kaganovich, A., Cookson, M. R., Stefanis, L., Surface, M., Deleidi, M., Di Fonzo, A., Alcalay, R. N., Rideout, H., Greggio, E., and Plotegher, N. (2022) LRRK2 kinase activity regulates GCase level and enzymatic activity differently depending on cell type in Parkinson’s disease, NPJ Parkinsons Dis., 8, 92, https://doi.org/10.1038/s41531-022-00354-3.
  19. Sanyal, A., Novis, H. S., Gasser, E., Lin, S., and LaVoie, M. J. (2020) LRRK2 kinase inhibition rescues deficits in lysosome function due to heterozygous GBA1 expression in human IPSC-derived neurons, Front. Neurosci., 14, 442, https://doi.org/10.3389/fnins.2020.00442.
  20. Mamais, A., Sanyal, A., Fajfer, A., Zykoski, C. G., Guldin, M., Riley-DiPaolo, A., Subrahmanian, N., Gibbs, W., Lin, S., and LaVoie, M. J. (2023) The LRRK2 kinase substrates Rab8a and Rab10 contribute complementary but distinct disease-relevant phenotypes in human neurons, bioRxiv, https://doi.org/10.1101/2023.04.30.538317.
  21. Rao, G., Fisch, L., Srinivasan, S., D’Amico, F., Okada, T., Eaton, C., and Robbins, C. (2023) Does this patient have Parkinson disease? JAMA, 289, 347-353, https://doi.org/10.1001/jama.289.3.347.
  22. Nikolaev, M. A., Kopytova, A. E., Baidakova, G. V., Emel’yanov, A. K., Salogub, G. N., Senkevich, K. A., Usenko, T. S., Gorchakova, M. V., Koval’chuk, Yu. P., Berkovich, O. A., Zakharova, E. Y., and Pchelina, S. N. (2019) Human peripheral blood macrophages as a model for studying glucocerebrosidase dysfunction, Cell Tissue Biol., 13, 100-106, https://doi.org/10.1134/S1990519X19020081.
  23. Tan, Y. L., Genereux, J. C., Pankow, S., Aerts, J. M., Yates, J. R., and Kelly, J. W. (2014) ERdj3 is an endoplasmic reticulum degradation factor for mutant glucocerebrosidase variants linked to Gaucher’s disease, Chem. Biol., 21, 967-976, https://doi.org/10.1016/j.chembiol.2014.06.008.
  24. Sawkar, A. R., Schmitz, M., Zimmer, K. P., Reczek, D., Edmunds, T., Balch, W. E., and Kelly, J. W. (2006) Chemical chaperones and permissive temperatures alter localization of Gaucher disease associated glucocerebrosidase variants, ACS Chem. Biol., 1, 235-251, https://doi.org/10.1021/cb600187q.
  25. Liou, B., Kazimierczuk, A., Zhang, M., Scott, C. R., Hegde, R. S., and Grabowski, G. A. (2006) Analyses of variant acid beta-glucosidases: effects of Gaucher disease mutations, J. Biol. Chem., 281, 4242-4253, https://doi.org/10.1074/jbc.M511110200.
  26. Yap, T. L., Gruschus, J. M., Velayati, A., Westbroek, W., Goldin, E., Moaven, N., Sidransky, E., and Lee, J. C. (2011) α-Synuclein interacts with glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases, J. Biol Chem., 286, 28080-28088, https://doi.org/10.1074/jbc.M111.237859.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Level of GCase and HexSph activity in primary culture of peripheral blood macrophages from patients with HD, GBA1-PD and control

Download (464KB)
3. Fig. 2. The level of GCase and HexSph activity in the primary culture of peripheral blood macrophages of patients with GD, GBA1-PD and control depending on mutations in the GBA1 gene in the group of patients with GBA1-PD

Download (507KB)

Copyright (c) 2025 Russian Academy of Sciences