Rethinking the evolutionary origin, function, and treatment of cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite remarkable progress in basic oncology, practical results remain unsatisfactory. This discrepancy is partly due to the exclusive focus on processes within the cancer cell, which results in a lack of recognition of cancer as a systemic disease. It is evident that a wise balance is needed between two alternative methodological approaches: reductionism, which would break down complex phenomena into smaller units to be studied separately, and holism, which emphasizes the study of complex systems as integrated wholes. A consistent holistic approach has so far led to the notion of cancer as a special organ, stimulating debate about its function and evolutionary significance. This article discusses the role of cancer as a mechanism of purifying selection of the gene pool, the correlation between hereditary and sporadic cancer, the cancer interactome, and the role of metastasis in a lethal outcome. It is also proposed that neutralizing the cancer interactome may be a novel treatment strategy.

Full Text

Restricted Access

About the authors

A. V. Lichtenstein

N. N. Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation

Author for correspondence.
Email: alicht@mail.ru
Russian Federation, 115478 Moscow

References

  1. Boire, A., Burke, K., Cox, T. R., Guise, T., Jamal-Hanjani, M., Janowitz, T., Kaplan, R., Lee, R., Swanton, C., Vander Heiden, M. G., and Sahai, E. (2024) Why do patients with cancer die? Nat. Rev. Cancer, 24, 578-589, https://doi.org/10.1038/s41568-024-00708-4.
  2. Editorial (2024) The road less travelled, Nat. Rev. Cancer, 24, 515, https://doi.org/10.1038/s41568-024-00720-8.
  3. Lichtenstein, A. V. (2014) Cancer research: a hurdle race, Biochemistry (Moscow), 79, 385-390, https://doi.org/10.1134/S0006297914050010.
  4. Laplane, L., and Maley, C. C. (2024) The evolutionary theory of cancer: challenges and potential solutions, Nat. Rev. Cancer, 24, 718-733, https://doi.org/10.1038/s41568-024-00734-2.
  5. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer, Cell, 100, 57-70, https://doi.org/10.1016/S0092-8674(00)81683-9.
  6. Hanahan, D., and Weinberg, R. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/j.cell.2011.02.013.
  7. Hanahan, D. (2022) Hallmarks of cancer: new dimensions, Cancer Discov., 12, 31-46, https://doi.org/10.1158/2159-8290.CD-21-1059.
  8. Hanahan, D., and Monje, M. (2023) Cancer hallmarks intersect with neuroscience in the tumor microenvironment, Cancer Cell, 41, 573-580, https://doi.org/10.1016/j.ccell.2023.02.012.
  9. Tisdale, M. J. (2002) Cachexia in cancer patients, Nat. Rev. Cancer, 2, 862-871, https://doi.org/10.1038/nrc927.
  10. Finora, K. (2003) Common paraneoplastic syndromes, Clin. Tech. Small Anim. Pract., 18, 123-126, https://doi.org/10.1053/svms.2003.36629.
  11. Kim, H. L., Belldegrun, A. S., Freitas, D. G., Bui, M. H., Han, K. R., Dorey, F. J., and Figlin, R. A. (2003) Paraneoplastic signs and symptoms of renal cell carcinoma: implications for prognosis, J. Urol., 170, 1742-1746, https://doi.org/10.1097/01.ju.0000092764.81308.6a.
  12. Mazzone, P. J., and Arroliga, A. C. (2003) Endocrine paraneoplastic syndromes in lung cancer, Curr. Opin. Pulm. Med., 9, 313-320, https://doi.org/10.1097/00063198-200307000-00012.
  13. Posner, J. B. (2003) Immunology of paraneoplastic syndromes: overview, Ann. N. Y. Acad. Sci., 998, 178-186, https://doi.org/10.1196/annals.1254.018.
  14. Spivak, J. L. (2005) The anaemia of cancer: death by a thousand cuts, Nat. Rev. Cancer, 5, 543-555, https://doi.org/10.1038/nrc1648.
  15. Rak, J., Klement, P., and Yu, J. (2006) Genetic determinants of cancer coagulopathy, angiogenesis and disease progression, Vnitr. Lek., 52 Suppl 1, 135-138.
  16. Rak, J., Yu, J. L., Luyendyk, J., and Mackman, N. (2006) Oncogenes, Trousseau syndrome, and cancer-related changes in the coagulome of mice and humans, Cancer Res., 66, 10643-10646, https://doi.org/10.1158/0008-5472.CAN-06-2350.
  17. Jorch, S. K., and Kubes, P. (2017) An emerging role for neutrophil extracellular traps in noninfectious disease, Nat. Med., 23, 279-287, https://doi.org/10.1038/nm.4294.
  18. Inoue, M., Nakashima, R., Enomoto, M., Koike, Y., Zhao, X., Yip, K., Huang, S. H., Waldron, J. N., Ikura, M., Liu, F. F., and Bratman, S. V. (2018) Plasma redox imbalance caused by albumin oxidation promotes lung-predominant NETosis and pulmonary cancer metastasis, Nat. Commun., 9, 5116, https://doi.org/10.1038/s41467-018-07550-x.
  19. Leaf, C. (2004) Why we’re losing the war on cancer (and how to win it), Fortune, 149, 76-82, 84-86, 88.
  20. Goldstein, I., Madar, S., and Rotter, V. (2012) Cancer research, a field on the verge of a paradigm shift? Trends Mol. Med., 18, 299-303, https://doi.org/10.1016/j.molmed.2012.04.002.
  21. Yuzhalin, A. E. (2024) Redefining cancer research for therapeutic breakthroughs, Br. J. Cancer, 130, 1078-1082, https://doi.org/10.1038/s41416-024-02634-6.
  22. Lichtenstein, A. V. (2005) On evolutionary origin of cancer, Cancer Cell Int., 5, 5, https://doi.org/10.1186/1475-2867-5-5.
  23. Bozic, I., and Nowak, M. A. (2013) Unwanted evolution, Science, 342, 938-939, https://doi.org/10.1126/science.1247887.
  24. Greaves, M. (2007) Darwinian medicine: a case for cancer, Nat. Rev. Cancer, 7, 213-221, https://doi.org/10.1038/nrc2071.
  25. Merlo, L. M. F., Pepper, J. W., Reid, B. J., and Maley, C. C. (2006) Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6, 924-935, https://doi.org/10.1038/nrc2013.
  26. Aktipis, C. A., and Nesse, R. M. (2013) Evolutionary foundations for cancer biology, Evol. Appl., 6, 144-159, https://doi.org/10.1111/eva.12034.
  27. Aktipis, C. A., Boddy, A. M., Jansen, G., Hibner, U., Hochberg, M. E., Maley, C. C., and Wilkinson, G. S. (2015) Cancer across the tree of life: cooperation and cheating in multicellularity, Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140219, https://doi.org/10.1098/rstb.2014.0219.
  28. Bissell, M. J., and Radisky, D. (2001) Putting tumours in context, Nat. Rev. Cancer, 1, 46-54, https://doi.org/10.1038/35094059.
  29. Egeblad, M., Nakasone, E. S., and Werb, Z. (2010) Tumors as organs: complex tissues that interface with the entire organism, Dev. Cell, 18, 884-901, https://doi.org/10.1016/j.devcel.2010.05.012.
  30. Perez-Losada, J., and Balmain, A. (2003) Stem-cell hierarchy in skin cancer, Nat. Rev. Cancer, 3, 434-443, https://doi.org/10.1038/nrc1095.
  31. Vittecoq, M., Roche, B., Daoust, S. P., Ducasse, H., Misse, D., Abadie, J., Labrut, S., Renaud, F., Gauthier-Clerc, M., and Thomas, F. (2013) Cancer: a missing link in ecosystem functioning? Trends Ecol. Evol., 28, 628-635, https://doi.org/10.1016/j.tree.2013.07.005.
  32. Graham, J. (1992) Cancer Selection: The New Theory of Evolution, Aculeus Press, pp. 1-213.
  33. Sommer, S. S. (1994) Does cancer kill the individual and save the species? Hum. Mutat., 3, 166-169, https://doi.org/10.1002/humu.1380030214.
  34. Thomas, M. A., Weston, B., Joseph, M., Wu, W., Nekrutenko, A., and Tonellato, P. J. (2003) Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes, Mol. Biol. Evol., 20, 964-968, https://doi.org/10.1093/molbev/msg110.
  35. Lichtenstein, A. V. (2010) Cancer: evolutionary, genetic and epigenetic aspects, Clin Epigenetics, 1, 85-100, https://doi.org/10.1007/s13148-010-0010-6.
  36. Leroi, A. M., Koufopanou, V., and Burt, A. (2003) Opinion: cancer selection, Nat. Rev. Cancer, 3, 226-231, https://doi.org/10.1038/nrc1016.
  37. Rahman, N. (2014) Realizing the promise of cancer predisposition genes, Nature, 505, 302-308, https://doi.org/10.1038/nature12981.
  38. Frank, S. A. (2004) Genetic predisposition to cancer – insights from population genetics, Nat. Rev. Genet., 5, 764-772, https://doi.org/10.1038/nrg1450.
  39. Lichtenstein, A. V. (2018) Genetic mosaicism and cancer: cause and effect, Cancer Res., 78, 1375-1378, https://doi.org/10.1158/0008-5472.CAN-17-2769.
  40. Byars, S. G., and Voskarides, K. (2020) Antagonistic pleiotropy in human disease, J. Mol. Evol., 88, 12-25, https://doi.org/10.1007/s00239-019-09923-2.
  41. Ponder, B. A. (2001) Cancer genetics, Nature, 411, 336-341, https://doi.org/10.1038/35077207.
  42. Yang, X., Kar, S., Antoniou, A. C., and Pharoah, P. D. P. (2023) Polygenic scores in cancer, Nat. Rev. Cancer, 23, 619-630, https://doi.org/10.1038/s41568-023-00599-x.
  43. Marsh, D. J., and Zori, R. T. (2002) Genetic insights into familial cancers – update and recent discoveries, Cancer Lett., 181, 125-164, https://doi.org/10.1016/S0304-3835(02)00023-X.
  44. Frank, S. A. (2004) Inheritance of cancer, Discov. Med., 4, 396-400.
  45. Nagy, R., Sweet, K., and Eng, C. (2004) Highly penetrant hereditary cancer syndromes, Oncogene, 23, 6445-6470, https://doi.org/10.1038/sj.onc.1207714.
  46. Lynch, H. T., Drescher, K., Knezetic, J., and Lanspa, S. (2014) Genetics, biomarkers, hereditary cancer syndrome diagnosis, heterogeneity and treatment: a review, Curr. Treat. Options Oncol., 15, 429-442, https://doi.org/10.1007/s11864-014-0293-5.
  47. Coffee, B., Cox, H. C., Kidd, J., Sizemore, S., Brown, K., Manley, S., and Mancini-DiNardo, D. (2017) Detection of somatic variants in peripheral blood lymphocytes using a next generation sequencing multigene pan cancer panel, Cancer Genet., 211, 5-8, https://doi.org/10.1016/j.cancergen.2017.01.002.
  48. Poliani, L., Greco, L., Barile, M., Dal, B. A., Bianchi, P., Basso, G., Giatti, V., Genuardi, M., Malesci, A., and Laghi, L. (2022) Canonical and uncanonical pathogenic germline variants in colorectal cancer patients by next-generation sequencing in a European referral center, ESMO Open, 7, 100607, https://doi.org/10.1016/j.esmoop.2022.100607.
  49. Chang, Y. S., Chao, D. S., Chung, C. C., Chou, Y. P., Chang, et al. (2023) Cancer carrier screening in the general population using whole-genome sequencing, Cancer Med., 12, 1972-1983, https://doi.org/10.1002/cam4.5034.
  50. Garutti, M., Foffano, L., Mazzeo, R., Michelotti, A., Da, R. L., Viel, A., Miolo, G., Zambelli, A., and Puglisi, F. (2023) Hereditary cancer syndromes: a comprehensive review with a visual tool, Genes (Basel), 14, 1025, https://doi.org/10.3390/genes14051025.
  51. Imyanitov, E. N., Kuligina, E. S., Sokolenko, A. P., Suspitsin, E. N., Yanus, G. A., Iyevleva, A. G., Ivantsov, A. O., and Aleksakhina, S. N. (2023) Hereditary cancer syndromes, World J. Clin. Oncol., 14, 40-68, https://doi.org/10.5306/wjco.v14.i2.40.
  52. Williams, G. C. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11, 398-411, https://doi.org/10.1111/j.1558-5646.1957.tb02911.x.
  53. Austad, S. N., and Hoffman, J. M. (2018) Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Public Health, 2018, 287-294, https://doi.org/10.1093/emph/eoy033.
  54. Jassim, A., Rahrmann, E. P., Simons, B. D., and Gilbertson, R. J. (2023) Cancers make their own luck: theories of cancer origins, Nat. Rev. Cancer, 23, 710-724, https://doi.org/10.1038/s41568-023-00602-5.
  55. Ahmad, A. S., Ormiston-Smith, N., and Sasieni, P. D. (2015) Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960, Br. J. Cancer, 112, 943-947, https://doi.org/10.1038/bjc.2014.606.
  56. Vincze, O., Colchero, F., Lemaitre, J. F., Conde, D. A., Pavard, S., Bieuville, M., Urrutia, A. O., Ujvari, B., Boddy, A. M., Maley, C. C., Thomas, F., and Giraudeau, M. (2022) Cancer risk across mammals, Nature, 601, 263-267, https://doi.org/10.1038/s41586-021-04224-5.
  57. Martincorena, I., Raine, K. M., Gerstung, M., Dawson, K. J., Haase, K., Van Loo, P., Davies, H., Stratton, M. R., and Campbell, P. J. (2017) Universal patterns of selection in cancer and somatic tissues, Cell, 171, 1029-1041, https://doi.org/10.1016/j.cell.2017.09.042.
  58. Srinivasan, P., Bandlamudi, C., Jonsson, P., Kemel, Y., Chavan, S. S., Richards, A. L., Penson, A. V., Bielski, C. M., Fong, C., Syed, A., Jayakumaran, G., Prasad, M., Hwee, J., Sumer, S. O., et al. (2021) The context-specific role of germline pathogenicity in tumorigenesis, Nat. Genet., 53, 1577-1585, https://doi.org/10.1038/s41588-021-00949-1.
  59. Dolgin, E. (2020) Cancer genome complexity made simple, Cancer Discov., 10, 480, https://doi.org/10.1158/2159-8290.CD-NB2020-010.
  60. Fortuno, C., Pesaran, T., Mester, J., Dolinsky, J., Yussuf, A., McGoldrick, K., James, P. A., and Spurdle, A. B. (2020) Genotype-phenotype correlations among TP53 carriers: Literature review and analysis of probands undergoing multi-gene panel testing and single-gene testing, Cancer Genet., 248-249, 11-17, https://doi.org/10.1016/j.cancergen.2020.09.002.
  61. Amadou, A., Waddington Achatz, M. I., and Hainaut, P. (2018) Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome, Curr. Opin. Oncol., 30, 23-29, https://doi.org/10.1097/CCO.0000000000000423.
  62. De Andrade, K. C., Mirabello, L., Stewart, D. R., Karlins, E., Koster, R., Wang, M., Gapstur, S. M., Gaudet, M. M., Freedman, N. D., Landi, M. T., Lemonnier, N., Hainaut, P., Savage, S. A., and Achatz, M. I. (2017) Higher-than-expected population prevalence of potentially pathogenic germline TP53 variants in individuals unselected for cancer history, Hum. Mutat., 38, 1723-1730, https://doi.org/10.1002/humu.23320.
  63. Torrezan, G. T. (2023) Untangling the mechanisms of cancer predisposition, Nat. Rev. Cancer, 23, 429-429, https://doi.org/10.1038/s41568-023-00577-3.
  64. Riviere, J. B., Mirzaa, G. M., O’Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., Ward, T. R., Butler, H. E., Kramer, N. A., Albrecht, B., Armour, C. M., Armstrong, L., Caluseriu, O., Cytrynbaum, C., Drolet, B., Innes, A. M., Lauzon, J. L., Lin, A. E., Mancini, G., et al. (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes, Nat. Genet., 44, 934-940, https://doi.org/10.1038/ng.2331.
  65. Carethers, J. M., and Stoffel, E. M. (2015) Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer, World J. Gastroenterol., 21, 9253-9261, https://doi.org/10.3748/wjg.v21.i31.9253.
  66. Huang, A. Y., Yang, X., Wang, S., Zheng, X., Wu, Q., Ye, A. Y., and Wei, L. (2018) Distinctive types of postzygotic single-nucleotide mosaicisms in healthy individuals revealed by genome-wide profiling of multiple organs, PLoS Genet., 14, e1007395, https://doi.org/10.1371/journal.pgen.1007395.
  67. Weitzel, J. N., Chao, E. C., Nehoray, B., Van Tongeren, L. R., LaDuca, H., Blazer, K. R., Slavin, T., Facmg, D. A. B. M., Pesaran, T., Rybak, C., Solomon, I., Niell-Swiller, M., Dolinsky, J. S., Castillo, D., Elliott, A., Gau, C. L., Speare, V., and Jasperson, K. (2018) Somatic TP53 variants frequently confound germ-line testing results, Genet. Med., 20, 809-816, https://doi.org/10.1038/gim.2017.196.
  68. Slavin, T. P., Coffee, B., Bernhisel, R., Logan, J., Cox, H. C., Marcucci, G., Weitzel, J., Neuhausen, S. L., and Mancini-DiNardo, D. (2019) Prevalence and characteristics of likely-somatic variants in cancer susceptibility genes among individuals who had hereditary pan-cancer panel testing, Cancer Genet., 235-236, 31-38, https://doi.org/10.1016/j.cancergen.2019.04.005.
  69. Wright, C. F., Prigmore, E., Rajan, D., Handsaker, J., McRae, J., Kaplanis, J., Fitzgerald, T. W., FitzPatrick, D. R., Firth, H. V., and Hurles, M. E. (2019) Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data, Nat. Commun., 10, 2985, https://doi.org/10.1038/s41467-019-11059-2.
  70. Jaiswal, S., and Ebert, B. L. (2019) Clonal hematopoiesis in human aging and disease, Science, 366, eaan4673, https://doi.org/10.1126/science.aan4673.
  71. Mester, J. L., Jackson, S. A., Postula, K., Stettner, A., Solomon, S., Bissonnette, J., Murphy, P. D., Klein, R. T., and Hruska, K. S. (2020) Apparently heterozygous TP53 pathogenic variants may be blood limited in patients undergoing hereditary cancer panel testing, J. Mol. Diagn., 22, 396-404, https://doi.org/10.1016/j.jmoldx.2019.12.003.
  72. Coffee, B., Cox, H. C., Bernhisel, R., Manley, S., Bowles, K., Roa, B. B., and Mancini-DiNardo, D. (2020) A substantial proportion of apparently heterozygous TP53 pathogenic variants detected with a next-generation sequencing hereditary pan-cancer panel are acquired somatically, Hum. Mutat., 41, 203-211, https://doi.org/10.1002/humu.23910.
  73. Latorre-Pellicer, A., Gil-Salvador, M., Parenti, I., Lucia-Campos, C., Trujillano, L., Marcos-Alcalde, I., Arnedo, M., Ascaso, A., Ayerza-Casas, A., Antonanzas-Perez, R., Gervasini, C., Piccione, M., Mariani, M., Weber, A., Kanber, D., Kuechler, A., et al. (2021) Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood, Sci. Rep., 11, 15459, https://doi.org/10.1038/s41598-021-94958-z.
  74. Castillo, D., Yuan, T. A., Nehoray, B., Cervantes, A., Tsang, K. K., Yang, K., Sand, S. R., Mokhnatkin, J., Herzog, J., Slavin, T. P., Hyman, S., Schwartz, A., Ebert, B. L., Amos, C. I., Garber, J. E., and Weitzel, J. N. (2022) Clonal hematopoiesis and mosaicism revealed by a multi-tissue analysis of constitutional TP53 status, Cancer Epidemiol. Biomarkers Prev., 31, 1621-1629, https://doi.org/10.1158/1055-9965.EPI-21-1296.
  75. Hendricks, L. A. J., Schuurs-Hoeijmakers, J., Spier, I., Haadsma, M. L., Eijkelenboom, A., Cremer, K., Mensenkamp, A. R., Aretz, S., Vos, J. R., and Hoogerbrugge, N. (2022) Catch them if you are aware: PTEN postzygotic mosaicism in clinically suspicious patients with PTEN Hamartoma Tumour Syndrome and literature review, Eur. J. Med. Genet., 65, 104533, https://doi.org/10.1016/j.ejmg.2022.104533.
  76. Salazar, R., Arbeithuber, B., Ivankovic, M., Heinzl, M., Moura, S., Hartl, I., Mair, T., Lahnsteiner, A., Ebner, T., Shebl, O., Proll, J., and Tiemann-Boege, I. (2022) Discovery of an unusually high number of de novo mutations in sperm of older men using duplex sequencing, Genome Res., 32, 499-511, https://doi.org/10.1101/gr.275695.121.
  77. Stoltze, U. K., Foss-Skiftesvik, J., Hansen, T. O., Rasmussen, S., Karczewski, K. J., Wadt, K. A. W., and Schmiegelow, K. (2024) The evolutionary impact of childhood cancer on the human gene pool, Nat. Commun., 15, 1881, https://doi.org/10.1038/s41467-024-45975-9.
  78. Nowak, M. A. (2006) Five rules for the evolution of cooperation, Science, 314, 1560-1563, https://doi.org/10.1126/science.1133755.
  79. Hamilton, W. D. (1964) The genetical evolution of social behaviour. I and II, J. Theor. Biol., 7, 17-52, https://doi.org/10.1016/0022-5193(64)90039-6.
  80. Maynard-Smith, J. (1964) Group selection and kin selection, Nature, 201, 1145-1147, https://doi.org/10.1038/2011145a0.
  81. Dawkins, R. (1989) The Selfish Gene, Oxford University Press.
  82. Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010) The evolution of eusociality, Nature, 466, 1057-1062, https://doi.org/10.1038/nature09205.
  83. Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J. A. C., Andersson, M., Andre, J. B., van Baalen, M., Balloux, F., Balshine, S., Barton, N., Beukeboom, L. W., Biernaskie, J. M., Bilde, T., Borgia, G., Breed, M., Brown, S., Bshary, R., et al. (2011) Inclusive fitness theory and eusociality, Nature, 471, E1-E4, https://doi.org/10.1038/nature09831.
  84. Kay, T., Keller, L., and Lehmann, L. (2020) The evolution of altruism and the serial rediscovery of the role of relatedness, Proc. Natl. Acad. Sci. USA, 117, 28894-28898, https://doi.org/10.1073/pnas.2013596117.
  85. Efferson, C., Bernhard, H., Fischbacher, U., and Fehr, E. (2024) Super-additive cooperation, Nature, 626, 1034-1041, https://doi.org/10.1038/s41586-024-07077-w.
  86. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nat. Rev. Genet., 6, 866-872, https://doi.org/10.1038/nrg1706.
  87. Ameisen, J. C. (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years, Cell Death. Differ., 9, 367-393, https://doi.org/10.1038/sj.cdd.4400950.
  88. Skulachev, V. P. (2001) The programmed death phenomena, aging, and the Samurai law of biology, Exp. Gerontol., 36, 995-1024, https://doi.org/10.1016/S0531-5565(01)00109-7.
  89. Feinberg, A. P., Koldobskiy, M. A., and Gondor, A. (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression, Nat. Rev. Genet., 17, 284-299, https://doi.org/10.1038/nrg.2016.13.
  90. Mintz, B., and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells, Proc. Natl. Acad. Sci. USA, 72, 3585-3589, https://doi.org/10.1073/pnas.72.9.3585.
  91. Shin, D., and Cho, K. H. (2023) Critical transition and reversion of tumorigenesis, Exp. Mol. Med., 55, 692-705, https://doi.org/10.1038/s12276-023-00969-3.
  92. Ohnishi, K., Semi, K., Yamamoto, T., Shimizu, M., Tanaka, A., Mitsunaga, K., Okita, K., Osafune, K., Arioka, Y., Maeda, T., Soejima, H., Moriwaki, H., Yamanaka, S., Woltjen, K., and Yamada, Y. (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation, Cell, 156, 663-677, https://doi.org/10.1016/j.cell.2014.01.005.
  93. Parreno, V., Loubiere, V., Schuettengruber, B., Fritsch, L., Rawal, C. C., Erokhin, M., Gyorffy, B., Normanno, D., Di Stefano, M., Moreaux, J., Butova, N. L., Chiolo, I., Chetverina, D., Martinez, A. M., and Cavalli, G. (2024) Transient loss of Polycomb components induces an epigenetic cancer fate, Nature, 629, 688-696, https:// doi.org/10.1038/s41586-024-07328-w.
  94. Sporn, M. B. (1996) The war on cancer, Lancet, 347, 1377-1381, https://doi.org/10.1016/S0140-6736(96)91015-6.
  95. Bessarabova, M., Pustovalova, O., Shi, W., Serebriyskaya, T., Ishkin, A., Polyak, K., Velculescu, V. E., Nikolskaya, T., and Nikolsky, Y. (2011) Functional synergies yet distinct modulators affected by genetic alterations in common human cancers, Cancer Res., 71, 3471-3481, https://doi.org/10.1158/0008-5472.CAN-10-3038.
  96. Sharma, A., Bleriot, C., Currenti, J., and Ginhoux, F. (2022) Oncofetal reprogramming in tumour development and progression, Nat. Rev. Cancer, 22, 593-602, https://doi.org/10.1038/s41568-022-00497-8.
  97. Greaves, M., and Maley, C. C. (2012) Clonal evolution in cancer, Nature, 481, 306-313, https://doi.org/10.1038/nature10762.
  98. Sonnenschein, C., Soto, A. M., Rangarajan, A., and Kulkarni, P. (2014) Competing views on cancer, J. Biosci., 39, 281-302, https://doi.org/10.1007/s12038-013-9403-y.
  99. Soto, A. M., and Sonnenschein, C. (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory, Bioessays, 33, 332-340, https://doi.org/10.1002/bies.201100025.
  100. Lichtenstein, A. (2005) Cancer as a programmed death of an organism, Biochemistry (Moscow), 70, 1055-1064, https://doi.org/10.1007/s10541-005-0224-y.
  101. Wang, G., Li, J., Bojmar, L., Chen, H., Li, Z., Tobias, G. C., Hu, M., Homan, E. A., Lucotti, S., Zhao, F., Posada, V., Oxley, P. R., Cioffi, M., Kim, H. S., Wang, H., Lauritzen, P., Boudreau, N., Shi, Z., Burd, C. E., Zippin, J. H., Lo, J. C., Pitt, G. S., Hernandez, J., Zambirinis, C. P., Hollingsworth, M. A., et al. (2023) Tumour extracellular vesicles and particles induce liver metabolic dysfunction, Nature, 618, 374-382, https://doi.org/10.1038/s41586-023-06114-4.
  102. Barcellos-Hoff, M. H., Lyden, D., and Wang, T. C. (2013) The evolution of the cancer niche during multistage carcinogenesis, Nat. Rev. Cancer, 13, 511-518, https://doi.org/10.1038/nrc3536.
  103. Plaks, V., Kong, N., and Werb, Z. (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16, 225-238, https://doi.org/10.1016/j.stem.2015.02.015.
  104. Bergers, G., and Benjamin, L. E. (2003) Tumorigenesis and the angiogenic switch, Nat. Rev. Cancer, 3, 401-410, https://doi.org/10.1038/nrc1093.
  105. Luo, Y., Yoneda, J., Ohmori, H., Sasaki, T., Shimbo, K., Eto, S., Kato, Y., Miyano, H., Kobayashi, T., Sasahira, T., Chihara, Y., and Kuniyasu, H. (2014) Cancer usurps skeletal muscle as an energy repository, Cancer Res., 74, 330-340, https://doi.org/10.1158/0008-5472.CAN-13-1052.
  106. Magnon, C., Hall, S. J., Lin, J., Xue, X., Gerber, L., Freedland, S. J., and Frenette, P. S. (2013) Autonomic nerve development contributes to prostate cancer progression, Science, 341, 1236361, https://doi.org/10.1126/science.1236361.
  107. Magnon, C., and Hondermarck, H. (2023) The neural addiction of cancer, Nat. Rev. Cancer, 23, 317-334, https://doi.org/10.1038/s41568-023-00556-8.
  108. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., MacDonald, D. D., Jin, D. K., Shido, K., Kerns, S. A., Zhu, Z., Hicklin, D., Wu, Y., Port, J. L., Altorki, N., Port, E. R., Ruggero, D., Shmelkov, S. V., Jensen, K. K., Rafii, S., and Lyden, D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche, Nature, 438, 820-827, https://doi.org/10.1038/nature04186.
  109. Kaplan, R. N., Rafii, S., and Lyden, D. (2006) Preparing the “soil”: the premetastatic niche, Cancer Res., 66, 11089-11093, https://doi.org/10.1158/0008-5472.CAN-06-2407.
  110. Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M., and Lyden, D. (2017) Pre-metastatic niches: organ-specific homes for metastases, Nat. Rev. Cancer, 17, 302-317, https://doi.org/10.1038/nrc.2017.6.
  111. De Visser, K. E., and Joyce, J. A. (2023) The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth, Cancer Cell, 41, 374-403, https://doi.org/10.1016/j.ccell.2023.02.016.
  112. Patras, L., Shaashua, L., Matei, I., and Lyden, D. (2023) Immune determinants of the pre-metastatic niche, Cancer Cell, 41, 546-572, https://doi.org/10.1016/j.ccell.2023.02.018.
  113. Karras, P., Black, J. R. M., McGranahan, N., and Marine, J. C. (2024) Decoding the interplay between genetic and non-genetic drivers of metastasis, Nature, 629, 543-554, https://doi.org/10.1038/s41586-024-07302-6.
  114. Rahrmann, E. P., Shorthouse, D., Jassim, A., Hu, L. P., Ortiz, M., Mahler-Araujo, B., Vogel, P., Paez-Ribes, M., Fatemi, A., Hannon, G. J., Iyer, R., Blundon, J. A., Lourenco, F. C., Kay, J., Nazarian, R. M., Hall, B. A., Zakharenko, S. S., Winton, D. J., Zhu, L., and Gilbertson, R. J. (2022) The NALCN channel regulates metastasis and nonmalignant cell dissemination, Nat. Genet., 54, 1827-1838, https://doi.org/10.1038/s41588-022-01182-0.
  115. McAllister, S. S., and Weinberg, R. A. (2010) Tumor-host interactions: a far-reaching relationship, J. Clin. Oncol., 28, 4022-4028, https://doi.org/10.1200/JCO.2010.28.4257.
  116. Bilder, D., Ong, K., Hsi, T. C., Adiga, K., and Kim, J. (2021) Tumour-host interactions through the lens of Drosophila, Nat. Rev. Cancer, 21, 687-700, https://doi.org/10.1038/s41568-021-00387-5.
  117. Wen, F., Shen, A., Choi, A., Gerner, E. W., and Shi, J. (2013) Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis, Cancer Res., 73, 4256-4266, https://doi.org/10.1158/0008-5472.CAN-12-3287.
  118. Anastasiadou, E., and Slack, F. J. (2014) Malicious exosomes, Science, 346, 1459-1460, https://doi.org/10.1126/science.aaa4024.
  119. Ayala, G. E., Dai, H., Powell, M., Li, R., Ding, Y., Wheeler, T. M., Shine, D., Kadmon, D., Thompson, T., Miles, B. J., Ittmann, M. M., and Rowley, D. (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer, Clin. Cancer Res., 14, 7593-7603, https://doi.org/10.1158/1078-0432.CCR-08-1164.
  120. Balkwill, F. (2004) Cancer and the chemokine network, Nat. Rev. Cancer, 4, 540-550, https://doi.org/10.1038/nrc1388.
  121. Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y., and Campisi, J. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6, 2853-2868, https://doi.org/10.1371/journal.pbio.0060301.
  122. Gusachenko, O. N., Zenkova, M. A., and Vlassov, V. V. (2013) Nucleic acids in exosomes: disease markers and intercellular communication molecules, Biochemistry (Moscow), 78, 1-7, https://doi.org/10.1134/S000629791301001X.
  123. Kharaziha, P., Ceder, S., Li, Q., and Panaretakis, T. (2012) Tumor cell-derived exosomes: A message in a bottle, Biochim. Biophys. Acta, 1826, 103-111, https://doi.org/10.1016/j.bbcan.2012.03.006.
  124. Khwaja, F. W., Svoboda, P., Reed, M., Pohl, J., Pyrzynska, B., and Van Meir, E. G. (2006) Proteomic identification of the wt-p53-regulated tumor cell secretome, Oncogene, 25, 7650-7661, https://doi.org/10.1038/sj.onc.1209969.
  125. Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J. L., and Karin, M. (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis, Nature, 457, 102-106, https://doi.org/10.1038/nature07623.
  126. Kulbe, H., Levinson, N. R., Balkwill, F., and Wilson, J. L. (2004) The chemokine network in cancer – much more than directing cell movement, Int. J. Dev. Biol., 48, 489-496, https://doi.org/10.1387/ijdb.041814hk.
  127. Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., Gould, D., Ayhan, A., and Balkwill, F. (2007) The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells, Cancer Res., 67, 585-592, https://doi.org/10.1158/0008-5472.CAN-06-2941.
  128. Moller, A., and Lobb, R. J. (2020) The evolving translational potential of small extracellular vesicles in cancer, Nat. Rev. Cancer, 20, 697-709, https://doi.org/10.1038/s41568-020-00299-w.
  129. Nikitina, I. G., Sabirova, E. Yu., Karpov, V. L., Lisitsyn, N. A., and Beresten, S. F. (2013) The role of exosomes and microvesicules in carcinogenesis, Mol. Biol. (Mosk), 47, 767-773, https://doi.org/10.1134/S0026893313050166.
  130. Rak, J. (2013) Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer, Front. Pharmacol., 4, 21, https://doi.org/10.3389/fphar.2013.00021.
  131. Skryabin, G. O., Komelkov, A. V., Zhordania, K. I., Bagrov, D. V., Vinokurova, S. V., Galetsky, S. A., Elkina, N. V., Denisova, D. A., Enikeev, A. D., and Tchevkina, E. M. (2022) Extracellular vesicles from uterine aspirates represent a promising source for screening markers of gynecologic cancers, Cells, 11, 1064, https://doi.org/10.3390/cells11071064.
  132. Wels, J., Kaplan, R. N., Rafii, S., and Lyden, D. (2008) Migratory neighbors and distant invaders: tumor-associated niche cells, Genes Dev., 22, 559-574, https://doi.org/10.1101/gad.1636908.
  133. Rak, J. (2015) Cancer: organ-seeking vesicles, Nature, 527, 312-314, https://doi.org/10.1038/nature15642.
  134. Darnell, R. B., and Posner, J. B. (2003) Paraneoplastic syndromes involving the nervous system, N. Engl. J. Med., 349, 1543-1554, https://doi.org/10.1056/NEJMra023009.
  135. Sato, K., Onuma, E., Yocum, R. C., and Ogata, E. (2003) Treatment of malignancy-associated hypercalcemia and cachexia with humanized anti-parathyroid hormone-related protein antibody, Semin. Oncol., 30, 167-173, https://doi.org/10.1053/j.seminoncol.2003.08.019.
  136. Yamada, G., Ohguro, H., Aketa, K., Itoh, T., Shijubo, N., Takahashi, H., Fujiwara, O., Satoh, M., Ohtsuka, K., and Abe, S. (2003) Invasive thymoma with paraneoplastic retinopathy, Hum. Pathol., 34, 717-719, https://doi.org/10.1016/S0046-8177(03)00183-7.
  137. Campisi, J. (2013) Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 75, 685-705, https://doi.org/10.1146/annurev-physiol-030212-183653.
  138. Faget, D. V., Ren, Q., and Stewart, S. A. (2019) Unmasking senescence: context-dependent effects of SASP in cancer, Nat. Rev. Cancer, 19, 439-453, https://doi.org/10.1038/s41568-019-0156-2.
  139. Dvorak, H. F. (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing, N. Engl. J. Med., 315, 1650-1659, https://doi.org/10.1056/NEJM198612253152606.
  140. Balkwill, F., and Mantovani, A. (2001) Inflammation and cancer: back to Virchow? Lancet, 357, 539-545, https://doi.org/10.1016/S0140-6736(00)04046-0.
  141. Coussens, L. M., and Werb, Z. (2002) Inflammation and cancer, Nature, 420, 860-867, https://doi.org/10.1038/nature01322.
  142. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008) Cancer-related inflammation, Nature, 454, 436-444, https://doi.org/10.1038/nature07205.
  143. Coussens, L. M., Zitvogel, L., and Palucka, A. K. (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science, 339, 286-291, https://doi.org/10.1126/science.1232227.
  144. Grivennikov, S. I., Greten, F. R., and Karin, M. (2010) Immunity, inflammation, and cancer, Cell, 140, 883-899, https://doi.org/10.1016/j.cell.2010.01.025.
  145. Abu-Remaileh, M., Bender, S., Raddatz, G., Ansari, I., Cohen, D., Gutekunst, J., Musch, T., Linhart, H., Breiling, A., Pikarsky, E., Bergman, Y., and Lyko, F. (2015) Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer, Cancer Res., 75, 2120-2130, https://doi.org/10.1158/ 0008-5472.CAN-14-3295.
  146. Okin, D., and Medzhitov, R. (2012) Evolution of inflammatory diseases, Curr. Biol., 22, R733-R740, https://doi.org/10.1016/j.cub.2012.07.029.
  147. Papareddy, P., Tapken, I., Kroh, K., Varma Bhongir, R. K., Rahman, M., Baumgarten, M., Cim, E. I., Gyorffy, L., Smeds, E., Neumann, A., Veerla, S., Olinder, J., Thorlacus, H., Ryden, C., Bartakova, E., Holub, M., and Herwald, H. (2024) The role of extracellular vesicle fusion with target cells in triggering systemic inflammation, Nat. Commun., 15, 1150, https://doi.org/10.1038/s41467-024-45125-1.
  148. Hawes, M. C., Wen, F., and Elquza, E. (2015) Extracellular DNA: a bridge to cancer, Cancer Res., 75, 4260-4264, https://doi.org/10.1158/0008-5472.CAN-15-1546.
  149. Cedervall, J., Zhang, Y., Huang, H., Zhang, L., Femel, J., Dimberg, A., and Olsson, A. K. (2015) Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals, Cancer Res., 75, 2653-2662, https://doi.org/10.1158/0008-5472.CAN-14-3299.
  150. Cedervall, J., Zhang, Y., and Olsson, A. K. (2016) Tumor-induced NETosis as a risk factor for metastasis and organ failure, Cancer Res., 76, 4311-4315, https://doi.org/10.1158/0008-5472.CAN-15-3051.
  151. Bonaventura, A., Liberale, L., Carbone, F., Vecchie, A., Diaz-Canestro, C., Camici, G., Montecucco, F., and Dallegri, F. (2018) The pathophysiological role of neutrophil extracellular traps in inflammatory diseases, Thromb. Haemost., 118, 6-27, https://doi.org/10.1160/TH17-09-0630.
  152. Yang, L., Liu, Q., Zhang, X., Liu, X., Zhou, B., Chen, J., Huang, D., Li, J., Li, H., Chen, F., Liu, J., Xing, Y., Chen, X., Su, S., and Song, E. (2020) DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25, Nature, 583, 133-138, https://doi.org/10.1038/s41586-020-2394-6.
  153. McGovern, J., Dolan, R. D., Skipworth, R. J., Laird, B. J., and McMillan, D. C. (2022) Cancer cachexia: a nutritional or a systemic inflammatory syndrome? Br. J. Cancer, 127, 379-382, https://doi.org/10.1038/s41416-022-01826-2.
  154. Rounis, K., Makrakis, D., Gioulbasanis, I., Ekman, S., De, P. L., Mavroudis, D., and Agelaki, S. (2022) Cancer cachexia and antitumor immunity: common mediators and potential targets for new therapies, Life (Basel), 12, 880, https://doi.org/10.3390/life12060880.
  155. Maccio, A., Madeddu, C., Lai, E., and Scartozzi, M. (2023) Cancer cachexia and chronic inflammation: an unbreakable bond, Br. J. Cancer, 128, 1609-1610, https://doi.org/10.1038/s41416-023-02200-6.
  156. Silverman, D. A., Martinez, V. K., Dougherty, P. M., Myers, J. N., Calin, G. A., and Amit, M. (2021) Cancer-associated neurogenesis and nerve-cancer cross-talk, Cancer Res., 81, 1431-1440, https://doi.org/10.1158/0008-5472.CAN-20-2793.
  157. Wang, H., Zheng, Q., Lu, Z., Wang, L., Ding, L., Xia, L., Zhang, H., Wang, M., Chen, Y., and Li, G. (2021) Role of the nervous system in cancers: a review, Cell Death Discov., 7, 76, https://doi.org/10.1038/s41420-021-00450-y.
  158. Zahalka, A. H., and Frenette, P. S. (2020) Nerves in cancer, Nat. Rev. Cancer, 20, 143-157, https://doi.org/10.1038/s41568-019-0237-2.
  159. Hanahan, D. (2014) Rethinking the war on cancer, Lancet, 383, 558-563, https://doi.org/10.1016/S0140-6736(13)62226-6.
  160. Gatenby, R. A., Silva, A. S., Gillies, R. J., and Frieden, B. R. (2009) Adaptive therapy, Cancer Res., 69, 4894-4903, https://doi.org/10.1158/0008-5472.CAN-08-3658.
  161. Jansen, G., Gatenby, R., and Aktipis, C. A. (2015) Opinion: control vs. eradication: applying infectious disease treatment strategies to cancer, Proc. Natl. Acad. Sci. USA, 112, 937-938, https://doi.org/10.1073/pnas.1420297111.
  162. Medzhitov, R., Schneider, D. S., and Soares, M. P. (2012) Disease tolerance as a defense strategy, Science, 335, 936-941, https://doi.org/10.1126/science.1214935.
  163. Rao, S., and Ayres, J. (2017) Resistance and tolerance defenses in cancer: Lessons from infectious diseases, Semin. Immunol., 32, 61, https://doi.org/10.1016/j.smim.2017.08.004.
  164. Lichtenstein, A. V. (2018) Strategies of the war on cancer: to kill or to neutralize? Front. Oncol., 8, 667, https://doi.org/10.3389/fonc.2018.00667.
  165. Sporn, M. B., and Suh, N. (2002) Chemoprevention: an essential approach to controlling cancer, Nat. Rev. Cancer, 2, 537-543, https://doi.org/10.1038/nrc844.
  166. Roxburgh, C. S. D., and McMillan, D. C. (2014) Cancer and systemic inflammation: treat the tumour and treat the host, Br. J. Cancer, 110, 1409-1412, https://doi.org/10.1038/bjc.2014.90.
  167. Valdes, A. M., Glass, D., and Spector, T. D. (2013) Omics technologies and the study of human ageing, Nat. Rev. Genet., 14, 601-607, https://doi.org/10.1038/nrg3553.
  168. Gurkar, A. U., Gerencser, A. A., Mora, A. L., Nelson, A. C., Zhang, A. R., Lagnado, A. B., Enninful, A., Benz, C., Furman, D., Beaulieu, D., Jurk, D., Thompson, E. L., Wu, F., Rodriguez, F., Barthel, G., Chen, H., Phatnani, H., Heckenbach, I., Chuang, J. H., Horrell, J., Petrescu, J., Alder, J. K., et al. (2023) Spatial mapping of cellular senescence: emerging challenges and opportunities, Nat. Aging, 3, 776-790, https://doi.org/10.1038/s43587-023-00446-6.
  169. Rutledge, J., Oh, H., and Wyss-Coray, T. (2022) Measuring biological age using omics data, Nat. Rev. Genet., 23, 715-727, https://doi.org/10.1038/s41576-022-00511-7.
  170. Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., and Verdin, E. (2019) From discoveries in ageing research to therapeutics for healthy ageing, Nature, 571, 183-192, https://doi.org/10.1038/s41586-019-1365-2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences