Characterization of carbohydrate specificity of monoclonal antibodies to fungal antigenic markers using biotinylated oligosaccharides as coating antigens
- Authors: Gening M.L.1, Polyanskaya A.V.1, Kuznetsov A.N.1, Titova A.D.1, Yudin V.I.1, Yashunskiy D.V.1, Tsvetkov Y.E.1, Yudina O.N.1, Krylov V.B.1, Nifantiev N.E.1
-
Affiliations:
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Issue: Vol 89, No 12 (2024)
- Pages: 2070-2080
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/677482
- DOI: https://doi.org/10.31857/S0320972524120045
- EDN: https://elibrary.ru/IFSICH
- ID: 677482
Cite item
Abstract
Mannan and β-(1→3)-glucan are two polysaccharide markers that are characteristic for a number of fungal pathogens, including Candida albicans, which is the most common cause of invasive mycoses in humans. In this study, we examined the epitope specificity of two monoclonal antibodies, CM532 and FG70, which recognize certain oligosaccharide fragments from these fungal polysaccharides. Using a panel of biotinylated oligosaccharides as coating antigens, we found that antibody CM532, obtained by immunization with a pentamannoside β-Man-(1→2)-β-Man-(1→2)-α-Man-(1→2)-α-Man-(1→2)-α-Man KLH conjugate, selectively recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man epitope. Another antibody, FG70, obtained by immunization with heptaglucan β-Glc-(1→3)-[β-Glc-(1→3)]5-β-Glc with KLH, interacts with a linear β-(1→3)-linked pentaglucoside fragment, and the presence of 3,6-branches within this epitope does not significantly affect the interaction efficiency. The data obtained indicate that the monoclonal antibodies under consideration can be used to create currently lacking effective diagnostics for the detection of fungal infections.
Full Text

About the authors
M. L. Gening
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: v_krylov@ioc.ac.ru
Laboratory of Synthetic Glycovaccines
Russian Federation, 119991 MoscowA. V. Polyanskaya
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: v_krylov@ioc.ac.ru
Laboratory of Synthetic Glycovaccines
Russian Federation, 119991 MoscowA. N. Kuznetsov
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: v_krylov@ioc.ac.ru
Laboratory of Synthetic Glycovaccines
Russian Federation, 119991 MoscowA. D. Titova
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: v_krylov@ioc.ac.ru
Laboratory of Synthetic Glycovaccines
Russian Federation, 119991 MoscowV. I. Yudin
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: v_krylov@ioc.ac.ru
Laboratory of Synthetic Glycovaccines
Russian Federation, 119991 MoscowD. V. Yashunskiy
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: nen@ioc.ac.ru
Laboratory of Glycoconjugate Chemistry
Russian Federation, 119991 MoscowY. E. Tsvetkov
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: nen@ioc.ac.ru
Laboratory of Glycoconjugate Chemistry
Russian Federation, 119991 MoscowO. N. Yudina
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: nen@ioc.ac.ru
Laboratory of Glycoconjugate Chemistry
Russian Federation, 119991 MoscowV. B. Krylov
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: v_krylov@ioc.ac.ru
Laboratory of Synthetic Glycovaccines
Russian Federation, 119991 MoscowN. E. Nifantiev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: nen@ioc.ac.ru
Laboratory of Glycoconjugate Chemistry
Russian Federation, 119991 MoscowReferences
- Soriano, A., Honore, P. M., Puerta-Alcalde, P., Garcia-Vidal, C., Pagotto, A., Gonçalves-Bradley, D. C., and Verweij, P. E. (2023) Invasive candidiasis: current clinical challenges and unmet needs in adult populations, J. Antimicrob. Chemother., 78, 1569-1585, https://doi.org/10.1093/jac/dkad139.
- Denning, D. W. (2024) Global incidence and mortality of severe fungal disease, Lancet Infect. Dis., 24, e428-e438, https://doi.org/10.1016/S1473-3099(23)00692-8.
- Terrero-Salcedo, D., and Powers-Fletcher, M. V. (2020) Updates in laboratory diagnostics for invasive fungal infections, J. Clin. Microbiol., 58, e01487-19, https://doi.org/10.1128/JCM.01487-19.
- Barantsevich, N., and Barantsevich, E. (2022) Diagnosis and treatment of invasive candidiasis, Antibiotics, 11, 718, https://doi.org/10.3390/antibiotics11060718.
- Roslansky, P. F., and Novitsky, T. J. (1991) Sensitivity of Limulus amebocyte lysate (LAL) to LAL-reactive glucans, J. Clin. Microbiol., 29, 2477-2483, https://doi.org/10.1128/jcm.29.11.2477-2483.1991.
- He, S., Hang, J.-P., Zhang, L., Wang, F., Zhang, D.-C., and Gong, F.-H. (2015) A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-D-glucan for invasive fungal infection: focus on cutoff levels, J. Microbiol. Immunol. Infect., 48, 351-361, https://doi.org/10.1016/j.jmii.2014.06.009.
- Synytsya, A., and Novák, M. (2013) Structural diversity of fungal glucans, Carbohydr. Polym., 92, 792-809, https://doi.org/10.1016/j.carbpol.2012.09.077.
- Senn, L., Calandra, T., Bille, J., and Marchetti, O. (2008) Beta-glucan in the diagnosis of invasive fungal disease: reply letter to Pasqualotto and Sukiennik, Clin. Infect. Dis., 47, 293-294, https://doi.org/10.1128/JCM.01737-13.
- Mikulska, M., Calandra, T., Sanguinetti, M., Poulain, D., Viscoli, C., and Third European Conference on Infections in Leukemia Group (2010) The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia, Crit. Care, 14, R222, https://doi.org/10.1186/cc9365.
- Solovev, A. S., Tsarapaev, P. V., Krylov, V. B., Yashunsky, D. V., Kushlinskii, N. E., and Nifantiev, N. E. (2023) A repertoire of anti-mannan Candida albicans antibodies in the blood sera of healthy donors, Russ. Chem. Bull., 72, 263-268, https://doi.org/10.1007/s11172-023-3731-3.
- Clancy, C. J., and Nguyen, M. H. (2018) Diagnosing invasive candidiasis, J. Clin. Microbiol., 56, e01909-17, https://doi.org/10.1128/JCM.01909-17.
- The Cava Trem Study Group, León, C., Ruiz-Santana, S., Saavedra, P., Castro, C., Loza, A., Zakariya, I., Úbeda, A., Parra, M., Macías, D., Tomás, J. I., Rezusta, A., Rodríguez, A., Gómez, F., and Martín-Mazuelos, E. (2016) Contribution of Candida biomarkers and DNA detection for the diagnosis of invasive candidiasis in ICU patients with severe abdominal conditions, Crit. Care, 20, 149, https://doi.org/10.1186/s13054-016-1324-3.
- Krylov, V. B., Solovev, A. S., Puchkin, I. A., Yashunsky, D. V., Antonets, A. V., Kutsevalova, O. Y., and Nifantiev, N. E. (2021) Reinvestigation of carbohydrate specificity of EBCA-1 monoclonal antibody used for the detection of Candida mannan, J. Fungi, 7, 504, https://doi.org/10.3390/jof7070504.
- Tuzikov, A., Chinarev, A., Shilova, N., Gordeeva, E., Galanina, O., Ovchinnikova, T., Schaefer, M., and Bovin, N. (2021). 40 years of glyco-polyacrylamide in glycobiology, Glycoconj. J., 38, 89-100, https://doi.org/10.1007/s10719-020-09965-5.
- Krylov, V. B., and Nifantiev, N. E. (2019) Synthetic oligosaccharides mimicking fungal cell wall polysaccharides, Curr. Top. Microbiol. Immunol., 425, 1-16, https://doi.org/10.1007/82_2019_187.
- Matveev, A. L., Krylov, V. B., Khlusevich, Y. A., Baykov, I. K., Yashunsky, D. V., Emelyanova, L. A., Tsvetkov, Y. E., Karelin, A. A., Bardashova, A. V., Wong, S. S. W., Aimanianda, V., Latgé, J.-P., Tikunova, N. V., and Nifantiev, N. E. (2019) Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen, PLoS One, 14, e0215535, https://doi.org/10.1371/journal.pone.0215535.
- Matveev, A. L., Krylov, V. B., Emelyanova, L. A., Solovev, A. S., Khlusevich, Y. A., Khlusevich, Y. A., Baykov, I. K., Fontaine, T., Latgé, J.-P., Tikunova, N. V., and Nifantiev, N. E. (2018) Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan, PLoS One, 13, e0193938, https://doi.org/10.1371/journal.pone.0193938.
- Karelin, A. A., Tsvetkov, Yu. E., Kogan, G., Bystricky, S., and Nifantiev, N. E. (2007) Synthesis of oligosaccharide fragments of mannan from Candida albicans cell wall and their BSA conjugates, Russ. J. Bioorg. Chem., 33, 110-121, https://doi.org/10.1134/S106816200701013X.
- Karelin, A. A., Tsvetkov, Y. E., Paulovičová, L., Bystrickỳ, S., Paulovičová, E., and Nifantiev, N. E. (2009) Synthesis of a heptasaccharide fragment of the mannan from Candida guilliermondii cell wall and its conjugate with BSA, Carbohydr. Res., 344, 29-35, https://doi.org/10.1016/j.carres.2008.09.016.
- Karelin, A. A., Tsvetkov, Y. E., Paulovičová, L., Bystrickỳ, S., Paulovičová, E., and Nifantiev, N. E. (2010) Synthesis of 3, 6-branched oligomannoside fragments of the mannan from Candida albicans cell wall corresponding to the antigenic factor 4, Carbohydr. Res., 345, 1283-1290, https://doi.org/10.1016/j.carres.2009.11.012.
- Argunov, D. A., Karelin, A. A., Grachev, A. A., Tsvetkov, Yu. E., and Nifantiev, N. E. (2011) A new synthesis of the 3,6-branched hexasaccharide fragment of the cell wall mannan in Candida albicans, corresponding to the antigenic factor 4, Russ. Chem. Bull., 60, 1004-1011, https://doi.org/10.1007/s11172-011-0157-0.
- Karelin, A. A., Tsvetkov, Yu. E., Paulovičová, E., Paulovičová, L., and Nifantiev, N. E. (2015) Blockwise synthesis of a pentasaccharide structurally related to the mannan fragment from the Candida albicans cell wall corresponding to the antigenic factor 6, Russ. Chem. Bull., 64, 2942-2948, https://doi.org/10.1007/s11172-015-1251-5.
- Karelin, A. A., Tsvetkov, Y. E., Paulovičová, E., Paulovičová, L., and Nifantiev, N. E. (2016) A blockwise approach to the synthesis of (1→2)-linked oligosaccharides corresponding to fragments of the acid-stable β-mannan from the Candida albicans cell wall, Eur. J. Org. Chem., 2016, 1173-1181, https://doi.org/10.1002/ejoc.201501464.
- Karelin, A. A., Ustyuzhanina, N. E., Tsvetkov, Y. E., and Nifantiev, N. E. (2019) Synthesis of a biotinylated probe from biotechnologically derived β-D-mannopyranosyl-(1→2)-D-mannopyranose for assessment of carbohydrate specificity of antibodies, Carbohydr. Res., 471, 39-42, https://doi.org/10.1016/j.carres.2018.10.013.
- Yashunsky, D. V., Tsvetkov, Y. E., Grachev, A. A., Chizhov, A. O., and Nifantiev, N. E. (2016) Synthesis of 3-aminopropyl glycosides of linear β-(1→3)-D-glucooligosaccharides, Carbohydr. Res., 419, 8-17, https://doi.org/10.1016/ j.carres.2015.10.012.
- Yashunsky, D. V., Tsvetkov, Yu. E., and Nifantiev, N. E. (2015) Synthesis of 3-aminopropyl glycosides of branched β-(1→3)-glucooligosaccharides, Russ. Chem. Bull., 64, 2922-2931, https://doi.org/10.1007/s11172-015-1249-z.
- Yashunsky, D. V., Tsvetkov, Y. E., and Nifantiev, N. E. (2016) Synthesis of 3-aminopropyl glycoside of branched β-(1→3)-D-glucooctaoside, Carbohydr. Res., 436, 25-30, https://doi.org/10.1016/j.carres.2016.11.005.
- Tsvetkov, Y. E., Burg-Roderfeld, M., Loers, G., Ardá, A., Sukhova, E. V., Khatuntseva, E. A., Grachev, A. A., Chizhov, A. O., Siebert, H.-C., Schachner, M., Jiménez-Barbero, J., and Nifantiev, N. E. (2012) Synthesis and molecular recognition studies of the HNK-1 trisaccharide and related oligosaccharides. The specificity of monoclonal anti-HNK-1 antibodies as assessed by surface plasmon resonance and STD NMR, J. Am. Chem. Soc., 134, 426-435, https://doi.org/10.1021/ja2083015.
- Krylov, V. B., Kuznetsov, A. N., Polyanskaya, A. V., Tsarapaev, P. V., Yashunsky, D. V., Kushlinskii, N. E., and Nifantiev, N. E. (2023) ASCA-related antibodies in the blood sera of healthy donors and patients with colorectal cancer: characterization with oligosaccharides related to Saccharomyces cerevisiae mannan, Front. Mol. Biosci., 10, 1296828, https://doi.org/10.3389/fmolb.2023.1296828.
- Sendid, B., Lecointe, K., Collot, M., Danzé, P.-M., Damiens, S., Drucbert, A.-S., Fradin, C., Vilcot, J.-P., Grenouillet, F., Dubar, F., de Ruyck, J., Jawhara, S., Mallet, J.-M., and Poulain, D. (2021) Dissection of the anti-Candida albicans mannan immune response using synthetic oligomannosides reveals unique properties of β-1,2 mannotriose protective epitopes, Sci. Rep., 11, 10825, https://doi.org/10.1038/s41598-021-90402-4.
- Singh, R. K., Reuber, E. E., Bruno, M., Netea, M. G., and Seeberger, P. H. (2023) Synthesis of oligosaccharides to identify an immunologically active epitope against Candida auris infection, Chem. Sci., 14, 7559-7563, https://doi.org/10.1039/D3SC01242E.
- Ruiz-Herrera, J., and Ortiz-Castellanos, L. (2019) Cell wall glucans of fungi. A review, Cell Surf., 5, 100022, https://doi.org/10.1016/j.tcsw.2019.100022.
- Friedman Ohana, R., Kirkland, T. A., Woodroofe, C. C., Levin, S., Uyeda, H. T., Otto, P., Hurst, R., Robers, M. B., Zimmerman, K., Encell, L. P., and Wood, F. V. (2015) Deciphering the cellular targets of bioactive compounds using a chloroalkane capture tag, ACS Chem. Biol., 10, 2316-2324, https://doi.org/10.1021/acschembio.5b00351.
- Sunamura, E., Iwasaki, M., Shiina, S., Kitahara, S., Yotani, T., Manabe, M., and Miyazaki, O. (2020) A novel enzyme immunoassay for the measurement of plasma (1→3)-β-D-glucan levels, J. Immunol. Methods, 487, 112872, https://doi.org/10.1016/j.jim.2020.112872.
Supplementary files
