Kinetics of Electron Transfer between Redox Cofactors in Photosystem I Measured by High-Frequency EPR Spectroscopy
- Authors: Sukhanov A.A.1, Milanovsky G.E.2, Vitukhnovskaya L.A.2,3, Mamedov M.D.2, Salikhov K.M.1, Semenov A.Y.2
-
Affiliations:
- Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Issue: Vol 89, No 10 (2024)
- Pages: 1752-1764
- Section: Regular articles
- URL: https://rjeid.com/0320-9725/article/view/676581
- DOI: https://doi.org/10.31857/S0320972524100105
- EDN: https://elibrary.ru/IOXZQI
- ID: 676581
Cite item
Abstract
Using high-frequency pulsed EPR spectroscopy in the Q range at cryogenic temperatures, the kinetics of redox transformations of the primary electron donor and the quinone acceptor in various complexes of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 were simultaneously studied for the first time in the time range of 200 μs-10 ms. In the A1-core complexes of PSI that lack 4Fe4S clusters, the kinetics of the and signals decay at a temperature of 100 K coincided and had a characteristic time of τ ≈ 500 μs, caused by charge recombination in the A ion-radical pair in the A branch of redox cofactors. The kinetics of the reverse electron transfer from B to in the B branch of redox cofactors with τ < 100 μs could not be recorded due to the time limitations of the method. In the native PSI complexes comprising a full set of redox cofactors and in the FX-core complexes with the 4Fe4S cluster FX only the kinetics of the signal was significantly faster than that of the signal. The disappearance of the signal had a characteristic time of 280-350 μs. It was suggested that, in addition to the reverse electron transfer from A to with τ ≈ 500 μs, it also includes a slowed down (up to 150-200 μs) forward electron transfer from A to the 4Fe4S cluster FX. In the kinetics of reduction, it was possible to distinguish components caused by the reverse electron transfer from (τ ≈ 500 μs) and from 4Fe4S clusters (τ = 1 ms for the FX-core and τ > 5 ms for native complexes). These results are in qualitative agreement with the data on the kinetics of reduction obtained earlier using pulsed absorption spectrometry at cryogenic temperatures.
Full Text

About the authors
A. A. Sukhanov
Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences
Email: milanovsky@belozersky.msu.ru
Russian Federation, 420111, Kazan
G. E. Milanovsky
Lomonosov Moscow State University
Author for correspondence.
Email: milanovsky@belozersky.msu.ru
Russian Federation, 119992, Moscow
L. A. Vitukhnovskaya
Lomonosov Moscow State University; Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: milanovsky@belozersky.msu.ru
Russian Federation, 119992, Moscow; 119991, Moscow
M. D. Mamedov
Lomonosov Moscow State University
Email: milanovsky@belozersky.msu.ru
Russian Federation, 119992, Moscow
K. M. Salikhov
Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences
Email: milanovsky@belozersky.msu.ru
Russian Federation, 420111, Kazan
A. Yu. Semenov
Lomonosov Moscow State University
Email: semenov@belozersky.msu.ru
Russian Federation, 119992, Moscow
References
- Milanovsky, G., Gopta, O., Petrova, A., Mamedov, M., Gorka, M., Cherepanov, D., Golbeck, J. H., and Semenov, A. (2019) Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I, Biochim. Biophys. Acta Bioenerg., 1860, 601-610, https://doi.org/10.1016/ j.bbabio.2019.06.008.
- Brettel, K. (1997) Electron transfer and arrangement of the redox cofactors in photosystem I, Biochim. Biophys. Acta Bioenerg., 1318, 322-373, https://doi.org/10.1016/S0005-2728(96)00112-0.
- Brettel, K., and Leibl, W. (2001) Electron transfer in photosystem I, Biochim. Biophys. Acta Bioenerg., 1507, 100-114, https://doi.org/10.1016/S0005-2728(01)00202-X.
- Golbeck, J. H. (2006) Photosystem I. The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-4256-0.
- Fromme, P., Jordan, P., and Krauß, N. (2001) Structure of photosystem I, Biochim. Biophys. Acta Bioenerg., 1507, 5-31, https://doi.org/10.1016/S0005-2728(01)00195-5.
- Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Shuvalov, V. A., and Semenov, A. Y. (2010) Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I, Biochim. Biophys. Acta, 1797, 1410-1420, https://doi.org/10.1016/j.bbabio.2010.02.026.
- Cherepanov, D. A., Shelaev, I. V., Gostev, F. E., Petrova, A., Aybush, A. V., Nadtochenko, V. A., Xu, W., Golbeck, J. H., and Semenov, A. Y. (2021) Primary charge separation within the structurally symmetric tetrameric Chl2APAPBChl2B chlorophyll exciplex in photosystem I, J. Photochem. Photobiol. B Biol., 217, 112154, https://doi.org/10.1016/ J.JPHOTOBIOL.2021.112154.
- Brettel, K., and Vos, M. H. (1999) Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in photosystem I, FEBS Lett., 447, 315-317, https://doi.org/10.1016/S0014-5793(99)00317-8.
- Savikhin, S., Xu, W., Martinsson, P., Chitnis, P. R., and Struve, W. S. (2001) Kinetics of charge separation and A0–→A1 electron transfer in photosystem I reaction centers, Biochemistry, 40, 9282-9290, https://doi.org/10.1021/bi0104165.
- Joliot, P., and Joliot, A. (1999) In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry, 38, 11130-11136, https://doi.org/10.1021/bi990857c.
- Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P., and Redding, K. (2001) Evidence for two active branches for electron transfer in photosystem I, Proc. Natl. Acad. Sci. USA, 98, 4437-4442, https://doi.org/10.1073/pnas.081078898.
- Muhiuddin, I. P., Heathcote, P., Carter, S., Purton, S., Rigby, S. E. J., and Evans, M. C. W. (2001) Evidence from time resolved studies of the P700+/A1– radical pair for photosynthetic electron transfer on both the PsaA and PsaB branches of the photosystem I reaction centre, FEBS Lett., 503, 56-60, https://doi.org/10.1016/S0014-5793(01)02696-5.
- Schlodder, E., Falkenberg, K., Gergeleit, M., and Brettel, K. (1998) Temperature dependence of forward and reverse electron transfer from A1– , the reduced secondary electron acceptor in photosystem I, Biochemistry, 37, 9466-9476, https://doi.org/10.1021/bi973182r.
- Brettel, K., and Golbeck, J. H. (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron-sulfur centers FX, FB and FA, Photosynth. Res., 45, 183-193, https://doi.org/10.1007/BF00015559.
- Möbius, K., and Savitsky, A. (2008) High-Field EPR Spectroscopy on Proteins and their Model Systems, Royal Society of Chemistry, Cambridge, https://doi.org/10.1039/9781847559272.
- Savitsky, A., Gopta, O., Mamedov, M., Golbeck, J. H., Tikhonov, A., Möbius, K., and Semenov, A. (2010) Alteration of the axial met ligand to electron acceptor A0 in photosystem I: effect on the generation of P 700+A1 − radical pairs as studied by W-band transient EPR, Appl. Magn. Reson., 37, 85-102, https://doi.org/10.1007/s00723-009-0052-0.
- Malferrari, M., Savitsky, A., Mamedov, M. D., Milanovsky, G. E., Lubitz, W., Möbius, K., Semenov, A. Y., and Venturoli, G. (2016) Trehalose matrix effects on charge-recombination kinetics in Photosystem I of oxygenic photosynthesis at different dehydration levels, Biochim. Biophys. Acta Bioenerg., 1857, 1440-1454, https:// doi.org/10.1016/j.bbabio.2016.05.001.
- Shelaev, I., Gorka, M., Savitsky, A., Kurashov, V., Mamedov, M., Gostev, F., Möbius, K., Nadtochenko, V., Golbeck, J., and Semenov, A. (2017) Effect of dehydrated trehalose matrix on the kinetics of forward electron transfer reactions in photosystem I, Zeitschrift Phys. Chemie, 231, 325-345, https://doi.org/10.1515/zpch-2016-0860.
- Poluektov, O. G., Paschenko, S. V., Utschig, L. M., Lakshmi, K. V., and Thurnauer, M. C. (2005) Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy, J. Am. Chem. Soc., 127, 11910-11911, https://doi.org/10.1021/ja053315t.
- Poluektov, O. G., and Utschig, L. M. (2015) Directionality of electron transfer in type I reaction center proteins: high-frequency EPR study of PS I with removed iron-sulfur centers, J. Phys. Chem. B, 119, 13771-13776, https://doi.org/10.1021/ACS.JPCB.5B04063.
- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyano-bacteria, J. Gen. Microbiol., 11, 1-61, https://doi.org/10.1099/ 00221287-111-1-1.
- Shen, G., Zhao, J., Reimer, S. K., Antonkine, M. L., Cai, Q., Weiland, S. M., Golbeck, J. H., and Bryant, D. A. (2002) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity, J. Biol. Chem., 277, 20343-20354, https://doi.org/10.1074/jbc.M201103200.
- Mula, S., Savitsky, A., Möbius, K., Lubitz, W., Golbeck, J. H., Mamedov, M. D., Semenov A. Y., and van der Est, A. (2012) Incorporation of a high potential quinone reveals that electron transfer in Photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946, https://doi.org/10.1039/c2pp05340c.
- MATLAB: 9.14.0, The MathWorks Inc., Natick, Massachusetts (2023) URL: https://www.mathworks.com/.
- Vassiliev, I. R., Jung, Y. S., Mamedov, M. D., Semenov, A. Yu., and Golbeck, J. H. (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I, Biophys. J., 72, 301-315, https://doi.org/10.1016/S0006-3495(97)78669-7.
- Shen, G., Antonkine, M. L., van der Est, A., Vassiliev, I. R., Brettel, K., Bittl, R., Zech, S. G., Zhao, J., Stehlik, D., Bryant, D. A., and Golbeck, J. H. (2002) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of F(X) in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy, J. Biol. Chem., 277, 20355-20366, https://doi.org/10.1074/jbc.M201104200.
- Cherepanov, D. A., Milanovsky, G. E., Gopta, O. A., Balasubramanian, R., Bryant, D. A., Semenov, A. Y., and Golbeck, J. H. (2018) Electron-phonon coupling in cyanobacterial photosystem I, J. Phys. Chem. B, 122, 7943-7955, https://doi.org/10.1021/acs.jpcb.8b03906.
- Salikhov, K. M., Kandrashkin, Y. E., and Salikhov, A. K. (1992) Peculiarities of free induction and primary spin echo signals for spin-correlated radical pairs, Appl. Magn. Reson., 3, 199-216, https://doi.org/10.1007/ BF03166790.
- Salikhov, K. M., Sukhanov, A. A., and Khairutdinov, I. T. (2024) Features of the primary electron spin echo signal for spin-correlated radical pairs, Appl. Magn. Reson., 55, 463-475, https://doi.org/10.1007/s00723-023-01636-6.
- Salikhov, K. M., Molin, Y. N., Sagdeev, R. Z., and Buchachenko, A. L. (1984) Spin polarization and magnetic effects in radical reactions, in Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam, Netherlands.
Supplementary files
