Kinetics of Electron Transfer between Redox Cofactors in Photosystem I Measured by High-Frequency EPR Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using high-frequency pulsed EPR spectroscopy in the Q range at cryogenic temperatures, the kinetics of redox transformations of the primary electron donor Р700+ and the quinone acceptor А1 in various complexes of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 were simultaneously studied for the first time in the time range of 200 μs-10 ms. In the A1-core complexes of PSI that lack 4Fe4S clusters, the kinetics of the А1 and Р700+ signals decay at a temperature of 100 K coincided and had a characteristic time of τ ≈ 500 μs, caused by charge recombination in the Р700+А1A ion-radical pair in the A branch of redox cofactors. The kinetics of the reverse electron transfer from А1B to Р700+ in the B branch of redox cofactors with τ < 100 μs could not be recorded due to the time limitations of the method. In the native PSI complexes comprising a full set of redox cofactors and in the FX-core complexes with the 4Fe4S cluster FX only the kinetics of the А1 signal was significantly faster than that of the Р700+ signal. The disappearance of the А1 signal had a characteristic time of 280-350 μs. It was suggested that, in addition to the reverse electron transfer from А1A to Р700+ with τ ≈ 500 μs, it also includes a slowed down (up to 150-200 μs) forward electron transfer from А1A to the 4Fe4S cluster FX. In the kinetics of Р700+ reduction, it was possible to distinguish components caused by the reverse electron transfer from А1 (τ ≈ 500 μs) and from 4Fe4S clusters (τ = 1 ms for the FX-core and τ > 5 ms for native complexes). These results are in qualitative agreement with the data on the kinetics of Р700+ reduction obtained earlier using pulsed absorption spectrometry at cryogenic temperatures.

Full Text

Restricted Access

About the authors

A. A. Sukhanov

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

Email: milanovsky@belozersky.msu.ru
Russian Federation, 420111, Kazan

G. E. Milanovsky

Lomonosov Moscow State University

Author for correspondence.
Email: milanovsky@belozersky.msu.ru
Russian Federation, 119992, Moscow

L. A. Vitukhnovskaya

Lomonosov Moscow State University; Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: milanovsky@belozersky.msu.ru
Russian Federation, 119992, Moscow; 119991, Moscow

M. D. Mamedov

Lomonosov Moscow State University

Email: milanovsky@belozersky.msu.ru
Russian Federation, 119992, Moscow

K. M. Salikhov

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

Email: milanovsky@belozersky.msu.ru
Russian Federation, 420111, Kazan

A. Yu. Semenov

Lomonosov Moscow State University

Email: semenov@belozersky.msu.ru
Russian Federation, 119992, Moscow

References

  1. Milanovsky, G., Gopta, O., Petrova, A., Mamedov, M., Gorka, M., Cherepanov, D., Golbeck, J. H., and Semenov, A. (2019) Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I, Biochim. Biophys. Acta Bioenerg., 1860, 601-610, https://doi.org/10.1016/ j.bbabio.2019.06.008.
  2. Brettel, K. (1997) Electron transfer and arrangement of the redox cofactors in photosystem I, Biochim. Biophys. Acta Bioenerg., 1318, 322-373, https://doi.org/10.1016/S0005-2728(96)00112-0.
  3. Brettel, K., and Leibl, W. (2001) Electron transfer in photosystem I, Biochim. Biophys. Acta Bioenerg., 1507, 100-114, https://doi.org/10.1016/S0005-2728(01)00202-X.
  4. Golbeck, J. H. (2006) Photosystem I. The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-4256-0.
  5. Fromme, P., Jordan, P., and Krauß, N. (2001) Structure of photosystem I, Biochim. Biophys. Acta Bioenerg., 1507, 5-31, https://doi.org/10.1016/S0005-2728(01)00195-5.
  6. Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Shuvalov, V. A., and Semenov, A. Y. (2010) Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I, Biochim. Biophys. Acta, 1797, 1410-1420, https://doi.org/10.1016/j.bbabio.2010.02.026.
  7. Cherepanov, D. A., Shelaev, I. V., Gostev, F. E., Petrova, A., Aybush, A. V., Nadtochenko, V. A., Xu, W., Golbeck, J. H., and Semenov, A. Y. (2021) Primary charge separation within the structurally symmetric tetrameric Chl2APAPBChl2B chlorophyll exciplex in photosystem I, J. Photochem. Photobiol. B Biol., 217, 112154, https://doi.org/10.1016/ J.JPHOTOBIOL.2021.112154.
  8. Brettel, K., and Vos, M. H. (1999) Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in photosystem I, FEBS Lett., 447, 315-317, https://doi.org/10.1016/S0014-5793(99)00317-8.
  9. Savikhin, S., Xu, W., Martinsson, P., Chitnis, P. R., and Struve, W. S. (2001) Kinetics of charge separation and A0–→A1 electron transfer in photosystem I reaction centers, Biochemistry, 40, 9282-9290, https://doi.org/10.1021/bi0104165.
  10. Joliot, P., and Joliot, A. (1999) In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry, 38, 11130-11136, https://doi.org/10.1021/bi990857c.
  11. Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P., and Redding, K. (2001) Evidence for two active branches for electron transfer in photosystem I, Proc. Natl. Acad. Sci. USA, 98, 4437-4442, https://doi.org/10.1073/pnas.081078898.
  12. Muhiuddin, I. P., Heathcote, P., Carter, S., Purton, S., Rigby, S. E. J., and Evans, M. C. W. (2001) Evidence from time resolved studies of the P700+/A1– radical pair for photosynthetic electron transfer on both the PsaA and PsaB branches of the photosystem I reaction centre, FEBS Lett., 503, 56-60, https://doi.org/10.1016/S0014-5793(01)02696-5.
  13. Schlodder, E., Falkenberg, K., Gergeleit, M., and Brettel, K. (1998) Temperature dependence of forward and reverse electron transfer from A1– , the reduced secondary electron acceptor in photosystem I, Biochemistry, 37, 9466-9476, https://doi.org/10.1021/bi973182r.
  14. Brettel, K., and Golbeck, J. H. (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron-sulfur centers FX, FB and FA, Photosynth. Res., 45, 183-193, https://doi.org/10.1007/BF00015559.
  15. Möbius, K., and Savitsky, A. (2008) High-Field EPR Spectroscopy on Proteins and their Model Systems, Royal Society of Chemistry, Cambridge, https://doi.org/10.1039/9781847559272.
  16. Savitsky, A., Gopta, O., Mamedov, M., Golbeck, J. H., Tikhonov, A., Möbius, K., and Semenov, A. (2010) Alteration of the axial met ligand to electron acceptor A0 in photosystem I: effect on the generation of P 700+A1 − radical pairs as studied by W-band transient EPR, Appl. Magn. Reson., 37, 85-102, https://doi.org/10.1007/s00723-009-0052-0.
  17. Malferrari, M., Savitsky, A., Mamedov, M. D., Milanovsky, G. E., Lubitz, W., Möbius, K., Semenov, A. Y., and Venturoli, G. (2016) Trehalose matrix effects on charge-recombination kinetics in Photosystem I of oxygenic photosynthesis at different dehydration levels, Biochim. Biophys. Acta Bioenerg., 1857, 1440-1454, https:// doi.org/10.1016/j.bbabio.2016.05.001.
  18. Shelaev, I., Gorka, M., Savitsky, A., Kurashov, V., Mamedov, M., Gostev, F., Möbius, K., Nadtochenko, V., Golbeck, J., and Semenov, A. (2017) Effect of dehydrated trehalose matrix on the kinetics of forward electron transfer reactions in photosystem I, Zeitschrift Phys. Chemie, 231, 325-345, https://doi.org/10.1515/zpch-2016-0860.
  19. Poluektov, O. G., Paschenko, S. V., Utschig, L. M., Lakshmi, K. V., and Thurnauer, M. C. (2005) Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy, J. Am. Chem. Soc., 127, 11910-11911, https://doi.org/10.1021/ja053315t.
  20. Poluektov, O. G., and Utschig, L. M. (2015) Directionality of electron transfer in type I reaction center proteins: high-frequency EPR study of PS I with removed iron-sulfur centers, J. Phys. Chem. B, 119, 13771-13776, https://doi.org/10.1021/ACS.JPCB.5B04063.
  21. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyano-bacteria, J. Gen. Microbiol., 11, 1-61, https://doi.org/10.1099/ 00221287-111-1-1.
  22. Shen, G., Zhao, J., Reimer, S. K., Antonkine, M. L., Cai, Q., Weiland, S. M., Golbeck, J. H., and Bryant, D. A. (2002) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity, J. Biol. Chem., 277, 20343-20354, https://doi.org/10.1074/jbc.M201103200.
  23. Mula, S., Savitsky, A., Möbius, K., Lubitz, W., Golbeck, J. H., Mamedov, M. D., Semenov A. Y., and van der Est, A. (2012) Incorporation of a high potential quinone reveals that electron transfer in Photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946, https://doi.org/10.1039/c2pp05340c.
  24. MATLAB: 9.14.0, The MathWorks Inc., Natick, Massachusetts (2023) URL: https://www.mathworks.com/.
  25. Vassiliev, I. R., Jung, Y. S., Mamedov, M. D., Semenov, A. Yu., and Golbeck, J. H. (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I, Biophys. J., 72, 301-315, https://doi.org/10.1016/S0006-3495(97)78669-7.
  26. Shen, G., Antonkine, M. L., van der Est, A., Vassiliev, I. R., Brettel, K., Bittl, R., Zech, S. G., Zhao, J., Stehlik, D., Bryant, D. A., and Golbeck, J. H. (2002) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of F(X) in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy, J. Biol. Chem., 277, 20355-20366, https://doi.org/10.1074/jbc.M201104200.
  27. Cherepanov, D. A., Milanovsky, G. E., Gopta, O. A., Balasubramanian, R., Bryant, D. A., Semenov, A. Y., and Golbeck, J. H. (2018) Electron-phonon coupling in cyanobacterial photosystem I, J. Phys. Chem. B, 122, 7943-7955, https://doi.org/10.1021/acs.jpcb.8b03906.
  28. Salikhov, K. M., Kandrashkin, Y. E., and Salikhov, A. K. (1992) Peculiarities of free induction and primary spin echo signals for spin-correlated radical pairs, Appl. Magn. Reson., 3, 199-216, https://doi.org/10.1007/ BF03166790.
  29. Salikhov, K. M., Sukhanov, A. A., and Khairutdinov, I. T. (2024) Features of the primary electron spin echo signal for spin-correlated radical pairs, Appl. Magn. Reson., 55, 463-475, https://doi.org/10.1007/s00723-023-01636-6.
  30. Salikhov, K. M., Molin, Y. N., Sagdeev, R. Z., and Buchachenko, A. L. (1984) Spin polarization and magnetic effects in radical reactions, in Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam, Netherlands.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electron transfer scheme in cyanobacteria PS 1: redox potentials of the main cofactors of PS 1 and the times of direct electron transfer reactions (a); block diagram of native (b) and A1-core PS 1 complexes devoid of 4Fe4S clusters (c). Redox cofactors are shown: Chl P700 dimer in red, Hl A0 – green, phylloquinones A1A and A1B – blue. The 4Fe4S clusters in Fig. 1, b are shown as yellow-blue cubes. PsaA, PsaB, and PsaC are protein subunits containing electron transfer cofactors. The blue and red arrows show the direct and reverse electron transfer reactions observed in the experiment, respectively, the blue and red arrows show the charge recombination reaction of the P+700A1-A pair, observed when both the P+700 and A1–signals disappear. The dotted line in panels b and c shows electron transfer, which is not recorded in the experiments presented below

Download (275KB)
3. Fig. 2. Experimental protocol for recording the kinetics of changes in EPR signals

Download (38KB)
4. Fig. 3. Charge recombination induced by laser flashes in FS 1 complexes, recorded as a decrease in absorption at a wavelength of 820 nm at room temperature for A1-core complexes (a), FX-core complexes (b) and the complete FS 1 complex (c). The characteristic times and relative amplitudes of the main components of recombination are indicated.. The absorption is indicated in conventional units, normalized to the maximum of the signal

Download (166KB)
5. Fig. 4. Echo-detected EPR spectra of three FS 1 complexes at 100 K in the microwave Q-band. a are the spectra of the native FS 1 at two different time delays; b are the spectra of the native FS 1 complex, FX–core and A1-core complexes recorded at a time delay of 0.28 ms. The arrows show the points of the spectrum where the kinetics were filmed. A, E – absorption and emission by the microwave sample, respectively

Download (144KB)
6. Fig. 5. Kinetics of A1- and P+700 EPR signals in A1–core FS 1 complexes at 100 K. The initial kinetics is shown by black solid lines, the components of the fitting are shown by thin red dotted lines, the sum of the components of the fitting is shown by a black dotted line. The amplitude of the signal is indicated in conventional units, normalized to the maximum of the signal components

Download (207KB)
7. Fig. 6. Kinetics of A1- and P+700 EPR signals in FX–core FS 1 complexes at 100 K. The designations are the same as in Fig. 5

Download (190KB)
8. Fig. 7. Kinetics of A1- and P+700 EPR signals in native FS–1 complexes at 100 K. The designations are the same as in Fig. 5

Download (203KB)

Copyright (c) 2024 Russian Academy of Sciences