Differences in the Effects of Beta-Hydroxybutyrate on Mitochondria Biogenesis, Markers of Oxidative Stress and Inflammation in Young and Old Rat Tissues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the therapeutic approaches to age-related diseases is to affect the metabolism of the body’s cells through certain diets or their pharmacological mimetics. The ketogenic diet significantly affects the energy metabolism of cells and the functioning of mitochondria, which is being actively studied in various age-related pathologies. In this study, we investigated the effect of the ketogenic diet mimetic beta-hydroxybutyrate (BHB) on the gene expression of proteins regulating mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam), quality control (Sqstm1), the work of the antioxidant system (Nfe2l2, Gpx1, Gpx3, Srxn1, Txnrd2, Slc6a9, Slc7a11), and the inflammatory response (Il1b, Tnf, Ptgs2, Gfap) in the brain, lungs, heart, liver, kidneys, and muscles of young and old rats. In addition, we analyzed mitochondrial DNA (mtDNA) copy number, the accumulation of mtDNA damage, and the level of oxidative stress by the concentration of thiobarbituric acid-reactive substances (TBARS), and reduced glutathione level. We showed that aging in a number of organs disrupts mitochondrial biogenesis and the functioning of the cell’s antioxidant system, which was accompanied by increased oxidative stress and inflammation. Administration of BHB for 2 weeks had different effects on organs of young and old rats. In particular, BHB increased the expression of genes of proteins associated with mitochondrial biogenesis and the antioxidant system, especially in the liver tissue and muscles of the young but not the old rats. At the same time, BHB contributed to the reduction of TBARS in the kidneys of the old rats. Thus, our study has shown that the administration of ketone bodies can significantly affect gene expression in organs, especially in young rats, by increasing mitochondrial biogenesis, improving the antioxidant system and partially reducing the level of oxidative stress. However, these changes were much less pronounced in old animals.

Full Text

Restricted Access

About the authors

V. V. Nesterova

Voronezh State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Voronezh

P. I. Babenkova

Voronezh State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Voronezh

A. A. Brezgunova

Lomonosov Moscow State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Moscow

N. A. Samoylova

Voronezh State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Voronezh

I. S. Sadovnikova

Voronezh State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Voronezh

D. S. Semenovich

Lomonosov Moscow State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Moscow

N. V. Andrianova

Lomonosov Moscow State University

Email: plotnikov@belozersky.msu.ru
Russian Federation, Moscow

A. P. Gureev

Voronezh State University; Voronezh State University of Engineering Technology

Email: plotnikov@belozersky.msu.ru
Russian Federation, Voronezh; Voronezh

E. Y. Plotnikov

Lomonosov Moscow State University

Author for correspondence.
Email: plotnikov@belozersky.msu.ru
Russian Federation, Moscow

References

  1. Son, J. M., and Lee, C. (2019) Mitochondria: multifaceted regulators of aging, BMB Rep., 52, 13-23, https://doi.org/10.5483/BMBRep.2019.52.1.300.
  2. Harrington, J. S., Ryter, S. W., Plataki, M., Price, D. R., Choi, A. M. K. (2023) Mitochondria in health, disease, and aging, Physiol. Rev., 103, 2349-2422, https://doi.org/10.1152/physrev.00058.2021.
  3. Whitehall, J. C., Smith, A. L. M., and Greaves, L. C. (2023) Mitochondrial DNA mutations and ageing, Subcell. Biochem., 102, 77-98, https://doi.org/10.1007/978-3-031-21410-3_4.
  4. Nissanka, N., and Moraes, C. T. (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease, FEBS Lett., 592, 728-742, https://doi.org/10.1002/1873-3468.12956.
  5. Иванникова, Е. В., Алташина, М. А., Трошина, Е. А. (2021) Кетогенная диета: история возникновения, механизм действия, показания, Пробл. эндокринол., 68, 49-72, https://doi.org/10.14341/probl12724.
  6. Kumar, A., Kumari, S., and Singh, D. (2022) Insights into the cellular interactions and molecular mechanisms of ketogenic diet for comprehensive management of epilepsy, Curr. Neuropharmacol., 20, 2034-2049, https://doi.org/10.2174/1570159X20666220420130109.
  7. Shippy, D. C., Wilhelm, C., Viharkumar, P. A., Raife, T. J., and Ulland, T. K. (2020) β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology, J. Neuroinflammation, 17, 280, https://doi.org/10.1186/s12974-020-01948-5.
  8. Norwitz, N. G., Hu, M. T., and Clarke, K. (2019) The mechanisms by which the ketone body D-β-hydroxybutyrate may improve the multiple cellular pathologies of Parkinson’s disease, Front. Nutr., 6, 63, https://doi.org/10.3389/fnut.2019.00063.
  9. Wei, S., Binbin, L., Yuan, W., Zhong, Z., Donghai, L., and Caihua, H. (2022) β-Hydroxybutyrate in cardiovascular diseases: a minor metabolite of great expectations, Front. Mol. Biosci., 13, 823602, https://doi.org/10.3389/fmolb.2022.823602.
  10. Li, Y., Zhang, X., Ma, A., and Kang, Y. (2021) Rational application of β-hydroxybutyrate attenuates ischemic stroke by suppressing oxidative stress and mitochondrial-dependent apoptosis via activation of the Erk/CREB/eNOS pathway, ACS Chem. Neurosci., 12, 1219-1227, https://doi.org/10.1021/acschemneuro.1c00046.
  11. Rojas-Morales, P., Pedraza-Chaverri, J., and Tapia, E. (2020) Ketone bodies, stress response, and redox homeostasis, Redox Biol., 29, 101395, https://doi.org/10.1016/j.redox.2019.101395.
  12. Jin, L. W., Lucente, J. D., Mendiola, U. R., Suthprasertporn, N., Tomilov, A., Cortopassi, G., Kim, K., Ramsey, J. J., and Maezawa, I. (2023) The ketone body β-hydroxybutyrate shifts microglial metabolism and suppresses amyloid-β oligomer-induced inflammation in human microglia, FASEB J., 37, e23261, https://doi.org/10.1096/fj.202301254R.
  13. Newman, J. C., and Verdin, E. (2017) β-Hydroxybutyrate: a signaling metabolite, Annu. Rev. Nutr., 37, 51-76, https://doi.org/10.1146/annurev-nutr-071816-064916.
  14. Goshtasbi, H., Pakchin, P. S., Movafeghi, A., Barar, J., Castejon, A. M., Omidian, H., and Omidi, Y. (2022) Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer’s disease, Neurochem. Int., 153, 105268, https://doi.org/10.1016/j.neuint.2021.105268.
  15. Kim, D. H., Park, M. H., Ha, S., Bang, E. J., Lee, Y., Lee, A. K., Lee, J., Yu, B. P., and Chung, H. Y. (2019) Anti-inflammatory action of β-hydroxybutyrate via modulation of PGC-1α and FoxO1, mimicking calorie restriction, Aging (Albany NY), 11, 1283-1304, https://doi.org/10.18632/aging.101838.
  16. Shi, X., Li, X., Li, D., Li, Y., Song, Y., Deng, Q., Wang, J., Zhang, Y., Ding, H., Yin, L., Zhang, Y., Wang, Z., Li, X., and Liu, G. (2014) β-Hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes, Cell Physiol. Biochem., 33, 920-932, https://doi.org/10.1159/ 000358664.
  17. Martins, R., Lithgow, G. J., and Link, W. (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity, Aging Cell., 15, 196-207, https://doi.org/10.1111/acel.12427.
  18. Gureev, A. P., Shaforostova, E. A., and Popov, V. N. (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways, Front. Genet., 14, 435, https://doi.org/10.3389/fgene.2019.00435.
  19. Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015) Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats, Biochemistry (Moscow), 80, 596-603, https://doi.org/10.1134/S0006297915050120.
  20. Gureev, A. P., Andrianova, N. V., Pevzner, I. B., Zorova, L. D., Chernyshova, E. V., Sadovnikova, I. S., Chistyakov, D. V., Popkov, V. A., Semenovich, D. S., Babenko, V. A., Silachev, D. N., Zorov, D. B., Plotnikov, E. Y., and Popov, V. N. (2022) Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats, FEBS J., 289, 5697-5713, https://doi.org/10.1111/febs.16451.
  21. Ohkawa, H., Ohishi, N., and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95, 351-358, https://doi.org/10.1016/0003-2697(79)90738-3.
  22. Hartree, E. F. (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response, Anal. Biochem., 48, 422-427, https://doi.org/10.1016/0003-2697(72)90094-2.
  23. Patsoukis, N., and Georgiou, C. D. (2004) Determination of the thiol redox state of organisms: new oxidative stress indicators, Anal. Bioanal. Chem., 378, 1783-1792, https://doi.org/10.1007/s00216-004-2525-1.
  24. Pal, S., and Tyler, J. K. (2016) Epigenetics and aging, Sci. Adv., 2, e1600584, https://doi.org/10.1126/sciadv.1600584.
  25. Hoppe, T., and Cohen, E. (2020) Organismal protein homeostasis mechanisms, Genetics, 215, 889-901, https://doi.org/10.1534/genetics.120.301283.
  26. Gregory, J. W. (2009) Metabolic disorders, Endocr. Dev., 15, 59-76, https://doi.org/10.1159/000207610.
  27. Lin, M. T., and Beal, M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, 443, 787-795, https://doi.org/10.1038/nature05292.
  28. Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Zorova, L. D., Stelmashook, E. V., Vasileva, A. K., Arkhangelskaya, A. A., and Khrjapenkova, T. G. (2007) The mitochondrion as Janus Bifrons, Biochemistry (Moscow), 72, 1115-1126, https://doi.org/10.1134/s0006297907100094.
  29. Schaum, N., Lehallier, B., Hahn, O., Pálovics, R., Hosseinzadeh, S., Lee, S. E., Sit, R., Lee, D. P., Losada, P. M., Zardeneta, M. E., Fehlmann, T., and Webber, J. T. (2020) Ageing hallmarks exhibit organ-specific temporal signatures, Nature, 583, 596-602, https://doi.org/10.1038/s41586-020-2499-y.
  30. Lima, T., Li, T. Y., Mottis, A., and Auwerx, J. (2022) Pleiotropic effects of mitochondria in aging, Nat. Aging., 2, 199-213, https://doi.org/10.1038/s43587-022-00191-2.
  31. Masuyama, M., Iida, R., Takatsuka, H., Yasuda, T., and Matsuki, T. (2005) Quantitative change in mitochondrial DNA content in various mouse tissues during aging, Biochim. Biophys. Acta., 1723, 302-308, https://doi.org/10.1016/j.bbagen.2005.03.001.
  32. Sharma, P., and Sampath, H. (2019) Mitochondrial DNA integrity: role in health and disease, Cells, 8, 100, https://doi.org/10.3390/cells8020100.
  33. Gadaleta, M. N., Rainaldi, G., Lezza, A. M., Milella, F., Fracasso, F., and Cantatore, P. (1992) Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats, Mutat. Res., 275, 181-193, https://doi.org/10.1016/0921-8734(92)90022-h.
  34. Bank, C., Soulimane, T., Schröder, J. M., Buse, G., and Zanssen, S. (2000) Multiple deletions of mtDNA remove the light strand origin of replication, Biochem. Biophys. Res. Commun., 279, 595-601, https://doi.org/10.1006/bbrc.2000.3951.
  35. Feng, J., Chen, Z., Liang, W., Wei, Z., and Ding, G. (2022) Roles of mitochondrial DNA damage in kidney diseases: a new biomarker, Int. J. Mol. Sci., 23, 15166, https://doi.org/10.3390/ijms232315166.
  36. Edwards, J. G. (2009) Quantification of mitochondrial DNA (mtDNA) damage and error rates by real-time QPCR, Mitochondrion, 9, 31-35, https://doi.org/10.1016/j.mito.2008.11.004.
  37. Zinovkina, L. A. (2018) Mechanisms of mitochondrial DNA repair in mammals, Biochemistry (Moscow), 83, 233-249, https://doi.org/10.1134/S0006297918030045.
  38. Nissanka, N., Minczuk, M., and Moraes, C. T. (2019) Mechanisms of mitochondrial DNA deletion formation, Trends Genet., 35, 235-244, https://doi.org/10.1016/j.tig.2019.01.001.
  39. Yan, C., Duanmu, X., Zeng, L., Liu, B., and Song, Z. (2019) Mitochondrial DNA: distribution, mutations, and elimination, Cells, 8, 379, https://doi.org/10.3390/cells8040379.
  40. Wang, L., Chen, P., and Xiao, W. (2021) β-Hydroxybutyrate as an anti-aging metabolite, Nutrients, 13, 3420, https://doi.org/10.3390/nu13103420.
  41. Shimazu, T., Hirschey, M. D., Newman, J., He, W., Shirakawa, K., Moan, N. L., Grueter, C. A., Lim, H., Saunders, L. R., Stevens, R. D., Newgard, C. B., Farese, R. V., Cabo, R., Ulrich, S., Akassoglou, K., and Verdin, E. (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor, Science, 339, 211-214, https://doi.org/10.1126/science.1227166.
  42. Makievskaya, C. I., Popkov, V. A., Andrianova, N. V., Liao, X., Zorov, D. B., and Plotnikov, E. Y. (2023) Ketogenic diet and ketone bodies against ischemic injury: targets, mechanisms, and therapeutic potential, Int. J. Mol. Sci., 24, 2576, https://doi.org/10.3390/ijms24032576.
  43. Jornayvaz, F. R., and Shulman, G. I. (2010) Regulation of mitochondrial biogenesis, Essays Biochem., 47, 69-84, https://doi.org/10.1042/bse0470069.
  44. Lu, Y., Li, Z., Zhang, S., Zhang, T., Liu, Y., and Zhang, L. (2023) Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation, Theranostics, 13, 736-766, https://doi.org/10.7150/ thno.79876.
  45. Ashrafi, G., and Schwarz, T. L. (2013) The pathways of mitophagy for quality control and clearance of mitochondria, Cell Death Differ., 20, 31-42, https://doi.org/10.1038/cdd.2012.81.
  46. Newman, J., and Verdin, E. (2017) β-Hydroxybutyrate: a signaling metabolite, Annu. Rev. Nutr., 21, 51-76, https://doi.org/10.1146/annurev-nutr-071816-064916.
  47. Koronowski, K. B., Greco, C. M., Huang, H., Kim, J., Fribourgh, J. L., Crosby, P., Mathur, L., Ren, X., Partch, C. L., Jang, C., Qiao, F., Zhao, Y., and Sassone-Corsi, P. (2021) Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation, Cell Rep., 36, 109487, https://doi.org/10.1016/j.celrep.2021.109487.
  48. Pan, A., Sun, X., Huang, F., Liu, J., Cai, Y., and Wu, X. (2022) The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production, Nat. Commun., 13, 386, https://doi.org/10.1038/s41467-022-28044-x.
  49. Lee, A. K., Kim, D. H., Bang, E., Choi, Y. J., and Chung, H. Y. (2020) β-Hydroxybutyrate suppresses lipid accumulation in aged liver through GPR109A-mediated signaling, Aging Dis., 11, 777-790, https://doi.org/10.14336/AD.2019.0926.
  50. Newman, J. C., and Verdin, E. (2014) β-Hydroxybutyrate: much more than a metabolite, Diabetes Res. Clin. Pract., 106, 173-181, https://doi.org/10.1016/j.diabres.2014.08.009.
  51. Komaravelli, N., Tian, B., Ivanciuc, T., Mautemps, N., Brasier, A. R., Garofalo, R. P., and Casola, A. (2015) Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2, Free Radic. Biol. Med., 88, 391-403, https://doi.org/10.1016/j.freeradbiomed.2015.05.043.
  52. Fang, Y., Chen, B., Gong, A. Y., Malhotra, D. K., Gupta, R., Dworkin, L. D., and Gong, R. (2021) The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults, Kidney Int., 100, 1037-1053, https://doi.org/10.1016/j.kint.2021.06.031.
  53. Gureev, A. P., Sadovnikova, I. S., Chernyshova, E. V., Tsvetkova, A. D., Babenkova, P. I., Nesterova, V. V., Krutskikh, E. P., Volodina, D. E., Samoylova, N. A., Andrianova, N. V., Silachev, D. N., and Plotnikov, E. Y. (2024) Beta-hydroxybutyrate mitigates sensorimotor and cognitive impairments in a photothrombosis-induced ischemic stroke in mice, Int. J. Mol. Sci., 25, 5710, https://doi.org/10.3390/ijms25115710.
  54. Kwak, M., Itoh, K., Yamamoto, M., and Kensler, T. W. (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter, Mol. Cell. Biol., 22, 2883-2892, https://doi.org/10.1128/MCB.22.9.2883-2892.2002.
  55. Luo, S., Yang, M., Han, Y., Zhao, H., Jiang, N., Li, L., Chen, W., Li, C., Yang, J., Liu, Y., Liu, C., Zhao, C., and Sun, L. (2022) β-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress, Int. Immunopharmacol., 111, 109101, https://doi.org/10.1016/j.intimp.2022.109101.
  56. Huang, T., Linden, M. A., Fuller, S. E., Goldsmith, F. R., Simon, J., Batdorf, H. M., Scott, M. C., Essajee, N. M., Brown, J. M., and Noland, R. C. (2021) Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 320, E1053-E1067, https://doi.org/10.1152/ajpendo.00410.2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of aging on gene expression of proteins responsible for mitochondrial biogenesis (a-c), autophagy (d), cellular antioxidant system (e-m) and inflammation (n-r). Results are presented as mean values ± error of the mean. Reliability of differences between groups: * p < 0.05 (t-test)

Download (683KB)
3. Fig. 2. Effect of subcutaneous administration of BGB for 2 weeks on tissues of young rats. Effect of BGB on the expression of proteins responsible for mitochondrial biogenesis and antioxidant system in liver (a-z) and muscle (i-m) tissues. Results are presented as mean values ± error of the mean. Reliability of differences between groups: * p < 0.05 (t-criterion)

Download (464KB)
4. Fig. 3. Heat maps showing the effects of age and subcutaneous injections of BHB on gene expression levels in rat brain, lung, heart, liver, kidney and muscle

Download (473KB)
5. Fig. 4. Effect of subcutaneous injections of BHB on the number of mtDNA copies in different tissues of rats of different ages. yDNA - nuclear DNA. Results are presented as mean values ± error of the mean. Reliability of differences between groups: * p < 0.05; ** p < 0.01; *** p < 0.001 (Kraskell-Wallis test)

Download (220KB)
6. Fig. 5. Effect of subcutaneous injections of BHB on the amount of mtDNA lesions in different tissues of rats of different ages. Results are presented as mean values ± error of the mean. Significance of differences with the control group of 4-month-old rats: * p < 0.05; ** p < 0.01 (Kraskell-Wallis test)

Download (182KB)
7. Fig. 6. Effect of subcutaneous injections of BHB on the number of large-scale mtDNA deletions in different tissues of rats of different ages. Results are presented as mean values ± error of the mean. The significance of differences between groups: * p < 0.05; ** p < 0.01 (Kraskell-Wallis test)

Download (170KB)
8. Fig. 7. Effect of subcutaneous injections of BHB on TBCRS content in different tissues of rats of different ages. The results are presented as mean values ± error of the mean. The significance of differences between groups: * p < 0.05; ** p < 0.01; *** p < 0.001 (Kraskell-Wallis test)

Download (255KB)
9. Fig. 8. Effect of subcutaneous injections of BHB on the content of reduced glutathione in different tissues of young and old rats. Results are presented as mean values ± error of the mean. Significance of differences between groups: *** p < 0.001 (Kraskell-Wallis test)

Download (186KB)

Copyright (c) 2024 Russian Academy of Sciences