Li+ Ions Accumulation Triggers FOS, JUN, EGR1, MYC Transcription Alteration in LiCl-Treated Human Umbilical Vein Endothelial Cells (HUVEC)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the intracellular concentrations of Na+ and K+ are shown to alter gene expression. Another monovalent cation, Li+, is well known as medicine for the treatment of psychiatric disorders but mechanism of its action is obscure. Thus, it is important to evaluate an effect of Li+ on gene expression in endothelial cells. Here we studied the influence of increased intracellular Na+ or Li+ concentrations on the transcription of Na+i/K+i-sensitive genes. A treatment of human endothelial cells (HUVEC) with LiCl for 1.5 h caused an accumulation of Li+ in the cells. This was followed by an increase in FOS and EGR1 mRNA and a decrease in JUN and MYC mRNA levels. Treatment of HUVEC with monensin led to an accumulation of Na+ and a loss of K+ ions. However, Na+-ionophore monensin had no significant effect on gene expression. Incubation of HUVEC with elevated extracellular NaCl concentration increased intracellular K+ concentration and ATF3 transcription and decreased JUN transcription. These results indicate that Na+ and Li+ ions have different effects on the cellular gene expression profile that apparently due to various actions on the intracellular monovalent cations ratio.

Full Text

Restricted Access

About the authors

O. E. Kvitko

Lomonosov Moscow State University

Author for correspondence.
Email: klimanova.ea@yandex.ru
Russian Federation, 119234, Moscow

D. A. Fedorov

Lomonosov Moscow State University

Email: klimanova.ea@yandex.ru
Russian Federation, 119234, Moscow

S. V. Sidorenko

Lomonosov Moscow State University

Email: klimanova.ea@yandex.ru
Russian Federation, 119234, Moscow

O. D. Lopina

Lomonosov Moscow State University

Email: klimanova.ea@yandex.ru
Russian Federation, 119234, Moscow

E. A. Klimanova

Lomonosov Moscow State University

Email: klimanova.ea@yandex.ru
Russian Federation, 119234, Moscow

References

  1. Skou, J. C., and Esmann, M. (1992) The Na,K-ATPase, J. Bioenerg. Biomembr., 24, 249-261, https://doi.org/10.1007/BF00768846.
  2. Pollack, L. R., Tate, E. H., and Cook, J. S. (1981) Turnover and regulation of Na-K-ATPase in HeLa cells, Am. J. Physiol. Cell Physiol., 241, C173-C183, https://doi.org/10.1152/ajpcell.1981.241.5.C173.
  3. Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O. A., Tremblay, J., Hamet, P., and Orlov, S. N. (2012) Ubiquitous Na+i/K+i-sensitive transcriptome in mammalian cells: evidence for Ca2+i-independent excitation-transcription coupling, PLoS One, 7, e38032, https://doi.org/10.1371/journal.pone.0038032.
  4. Klimanova, E. A., Sidorenko, S. V., Smolyaninova, L. V., Kapilevich, L. V., Gusakova, S. V., Lopina, O. D., and Orlov, S. N. (2019) Ubiquitous and cell type-specific transcriptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: physiological and pathophysiological implications, Curr. Top. Membr., 83, 107-149, https://doi.org/10.1016/bs.ctm.2019.01.006.
  5. Beniaminov, A., Shchyolkina, A., and Kaluzhny, D. (2019) Conformational features of intramolecular G4-DNA constrained by single-nucleotide loops, Biochimie, 160, 122-128, https://doi.org/10.1016/j.biochi.2019.02.013.
  6. Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., and Neidle, S. (2006) Quadruplex DNA: sequence, topology and structure, Nucleic Acids Res., 34, 5402-5415, https://doi.org/10.1093/nar/gkl655.
  7. Papp, C., Mukundan, V. T., Jenjaroenpun, P., Winnerdy, F. R., Ow, G. S., Phan, A. T., and Kuznetsov, V. A. (2023) Stable bulged G-quadruplexes in the human genome: identification, experimental validation and functionalization, Nucleic Acids Res., 51, 4148-4177, https://doi.org/0.1093/nar/gkad252.
  8. Venczel, E. A., and Sen, D. (1993) Parallel and antiparallel G-DNA structures from a complex telomeric sequence, Biochemistry, 32, 6220-6228, https://doi.org/10.1021/bi00075a015.
  9. Yang, D., and Hurley, L. H. (2006) Structure of the biologically relevant G-quadruplex in the c-MYC promoter, Nucleosides Nucleotides Nucleic Acids, 25, 951-968, https://doi.org/10.1080/15257770600809913.
  10. Klimanova, E. A., Sidorenko, S. V., Abramicheva, P. A., Tverskoi, A. M., Orlov, S. N., and Lopina, O. D. (2020) Transcriptomic changes in endothelial cells triggered by Na,K-ATPase inhibition: a search for upstream Na+i/K+i sensitive genes, IJMS, 21, 7992, https://doi.org/10.3390/ijms21217992.
  11. Volkmann, C., Bschor, T., and Köhler, S. (2020) Lithium treatment over the lifespan in bipolar disorders, Front. Psychiatry, 11, 377, https://doi.org/10.3389/fpsyt.2020.00377.
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275, https://doi.org/10.1016/S0021-9258(19)52451-6.
  13. Fedorov, D. A., Sidorenko, S. V., Yusipovich, A. I., Parshina, E. Y., Tverskoi, A. M., Abramicheva, P. A., Maksimov, G. V., Orlov, S. N., Lopina, O. D., and Klimanova, E. A. (2021) Na+i/K+i imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl, Heliyon, 7, e08088, https://doi.org/10.1016/j.heliyon.2021.e08088.
  14. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262.
  15. Chew, T. A., Zhang, J., and Feng, L. (2021) High-resolution views and transport mechanisms of the NKCC1 and KCC transporters, J. Mol. Biol., 433, 167056, https://doi.org/10.1016/j.jmb.2021.167056.
  16. Lang, F. (2007) Mechanisms and significance of cell volume regulation, J. Am. College Nutr., 26, 613S-623S, https://doi.org/10.1080/07315724.2007.10719667.
  17. Haloui, M., Taurin, S., Akimova, O. A., Guo, D.-F., Tremblay, J., Dulin, N. O., Hamet, P., and Orlov, S. N. (2007) Na+i-induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements, FEBS J., 274, 3557-3567, https://doi.org/10.1111/j.1742-4658.2007.05885.x.
  18. Li, L., Song, H., Zhong, L., Yang, R., Yang, X.-Q., Jiang, K.-L., and Liu, B.-Z. (2015) Lithium chloride promotes apoptosis in human leukemia NB4 cells by inhibiting glycogen synthase kinase-3 beta, Int. J. Med. Sci., 12, 805-810, https://doi.org/10.7150/ijms.12429.
  19. Watanabe, S., Iga, J., Nishi, A., Numata, S., Kinoshita, M., Kikuchi, K., Nakataki, M., and Ohmori, T. (2014) Microarray analysis of global gene expression in leukocytes following lithium treatment, Hum. Psychopharmacol. Clin. Exp., 29, 190-198, https://doi.org/10.1002/hup.2381.
  20. Kim, S. H., Yu, H. S., Park, H. G., Ahn, Y. M., Kim, Y. S., Lee, Y. H., Ha, K., and Shin, S. Y. (2013) Egr1 regulates lithium-induced transcription of the Period 2 (PER2) gene, Biochim. Biophys. Acta, 1832, 1969-1979, https:// doi.org/10.1016/j.bbadis.2013.06.010.
  21. Haarman, B. (Benno) C., Riemersma-Van der Lek, R. F., Burger, H., Netkova, M., Drexhage, R. C., Bootsman, F., Mesman, E., Hillegers, M. H., Spijker, A. T., Hoencamp, E., Drexhage, H. A., and Nolen, W. A. (2014) Relationship between clinical features and inflammation-related monocyte gene expression in bipolar disorder – towards a better understanding of psychoimmunological interactions, Bipolar Disord., 16, 137-150, https://doi.org/10.1111/bdi.12142.
  22. Zhang, W. V., Jüllig, M., Connolly, A. R., and Stott, N. S. (2005) Early gene response in lithium chloride induced apoptosis, Apoptosis, 10, 75-90, https://doi.org/10.1007/s10495-005-6063-x.
  23. Fedorov, D. A., Sidorenko, S. V., Yusipovich, A. I., Bukach, O. V., Gorbunov, A. M., Lopina, O. D., and Klimanova, E. A. (2022) Increased extracellular sodium concentration as a factor regulating gene expression in endothelium, Biochemistry (Moscow), 87, 489-499, https://doi.org/10.1134/S0006297922060013.
  24. Taurin, S., Dulin, N. O., Pchejetski, D., Grygorczyk, R., Tremblay, J., Hamet, P., and Orlov, S. N. (2002) c-Fos Expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism, J. Physiol., 543, 835-847, https://doi.org/10.1113/jphysiol.2002.023259.
  25. Lopina, O. D., Tverskoi, A. M., Klimanova, E. A., Sidorenko, S. V., and Orlov, S. N. (2020) Ouabain-induced cell death and survival. Role of α1-Na,K-ATPase-mediated signaling and Na+i/K+i-dependent gene expression, Front. Physiol., 11, https://doi.org/10.3389/fphys.2020.01060.
  26. Villegas-Vázquez, E. Y., Quintas-Granados, L. I., Cortés, H., González-Del Carmen, M., Leyva-Gómez, G., Rodríguez-Morales, M., Bustamante-Montes, L. P., Silva-Adaya, D., Pérez-Plasencia, C., Jacobo-Herrera, N., Reyes-Hernández, O. D., and Figueroa-González, G. (2023) Lithium: a promising anticancer agent, Life, 13, 537, https://doi.org/ 10.3390/life13020537.
  27. Masana, M. I., Bitran, J. A., Hsiao, J. K., and Potter, W. Z. (1992) In vivo evidence that lithium inactivates Gi modulation of adenylate cyclase in brain, J. Neurochem., 59, 200-205, https://doi.org/10.1111/j.1471-4159. 1992.tb08891.x.
  28. Rao, A. S., Kremenevskaja, N., Resch, J., and Brabant, G. (2005) Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/β-catenin signalling, Eur. J. Endocrinol., 153, 929-938, https://doi.org/10.1530/eje.1.02038.
  29. Zeng, Z., Wang, H., Shang, F., Zhou, L., Little, P. J., Quirion, R., and Zheng, W. (2016) Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways, Psychopharmacology, 233, 785-794, https://doi.org/10.1007/s00213-015-4168-7.
  30. Chowdhury, S., Wang, J., Nuccio, S. P., Mao, H., and Di Antonio, M. (2022) Short LNA-modified oligonucleotide probes as efficient disruptors of DNA G-quadruplexes, Nucleic Acids Res., 50, 7247-7259, https://doi.org/10.1093/nar/gkac569.
  31. Esain-Garcia, I., Kirchner, A., Melidis, L., Tavares, R. C. A., Dhir, S., Simeone, A., Yu, Z., Madden, S. K., Hermann, R., Tannahill, D., and Balasubramanian, S. (2024) G-quadruplex DNA structure is a positive regulator of MYC transcription, Proc. Natl. Acad. Sci. USA, 121, e2320240121, https://doi.org/10.1073/pnas.2320240121.
  32. Lopina, O. D., Sidorenko, S. V., Fedorov, D. A., and Klimanova, E. A. (2024) G-quadruplexes as sensors of intracellular Na+/K+ ratio: potential role in regulation of transcription and translation, Biochemistry (Moscow), 89, S262-S277, https://doi.org/10.1134/S0006297924140153.
  33. Sen, D., and Gilbert, W. (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA, Nature, 344, 410-414, https://doi.org/10.1038/344410a0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of 40 mM LiCl, 40 mM NaCl and 1.2 micrograms/ml of monenzine added to the culture medium on the intracellular content of Na+ (a), K+(b) and Li+ (c) ions in HUVEC. The cells were incubated under experimental conditions for 1.5 hours. The values are presented as the average ± SE (n = 4-6). Significant differences were calculated using a one-way ANOVA; * p < 0.05; *** p < 0.001; **** p < 0.0001

Download (149KB)
3. Fig. 2. The dependence of intracellular Na+ content in HUVEC on the concentration of monensin in the culture medium. The cells were incubated in a monensin-containing medium for 1.5 hours. The values are presented as the average ± SE (n = 4-6)

Download (72KB)
4. Fig. 3. The effect of 40 mM LiCl, 40 mM NaCl and 1.2 micrograms/ml of monenzine added to the culture medium on the mRNA content of the FOS (a), JUN(b), EGR1 (c), MYC (d), ATF3 (e), PTGS2 (e) genes in HUVEC. The cells were incubated under experimental conditions for 1.5 hours. The values are presented as the average ± SE (n = 5). Significant differences were calculated using a one-way ANOVA; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001

Download (218KB)

Copyright (c) 2024 Russian Academy of Sciences