Astaxanthin Reduces Н2O2- and Doxorubicin-Induced Cardiotoxicity in H9c2 Cardiomyocyte Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiovascular diseases are one of the most challenging problems in clinical practice. Astaxanthin (AST) is a keto-carotenoid (xanthophyll) mainly of marine origin, which is able to penetrate the cell membrane, localize in the mitochondria and prevent mitochondrial dysfunction. The present study examined the effect of astaxanthin on the death of H9c2 cardiomyocytes caused by the cytotoxic effect of hydrogen peroxide (H2O2) and doxorubicin. Using the methods of spectrophotometry, spectrofluorimetry, and Western blotting analysis, it was shown that treatment of cells with AST contributed to an increase in the number of H9c2 cells resistant to H2O2 and doxorubicin, while maintaining the value of their mitochondrial transmembrane potential, reducing the intracellular production of reactive oxygen species and an increase in the intracellular content of mitophagy markers PINK1, Parkin and prohibitin 2. The obtained results suggest that the use of AST may be a highly effective way to prevent and treat cardiovascular diseases.

Full Text

Restricted Access

About the authors

R. R. Krestinin

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Author for correspondence.
Email: ovkres@mail.ru
Rwanda, 142290, Pushchino, Moscow Region

M. I. Kobyakova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

Yu. L. Baburina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

L. D. Sotnikova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

O. V. Krestinina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

References

  1. Peoples, J. N., Saraf, A., Ghazal, N., Pham, T. T., and Kwong, J. Q. (2019) Mitochondrial dysfunction and oxidative stress in heart disease, Exp. Mol. Med., 51, 1-13, https://doi.org/10.1038/s12276-019-0355-7.
  2. Bullon, P., Newman, H. N., and Battino, M. (2014) Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol. 2000, 64, 139-153, https://doi.org/10.1111/j.1600-0757.2012.00455.x.
  3. Hernandez-Aguilera, A., Rull, A., Rodriguez-Gallego, E., Riera-Borrull, M., Luciano-Mateo, F., Camps, J., Menendez, J. A., and Joven, J. (2013) Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities, Mediators Inflamm., 2013, 135698, https://doi.org/10.1155/ 2013/135698.
  4. Kim, S. H., and Kim, H. (2018) Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review, Nutrients, 10, https://doi.org/10.3390/nu10091137.
  5. Griffiths, E. J. (2012) Mitochondria and heart disease, Adv. Exp. Med. Biol., 942, 249-267, https://doi.org/10.1007/ 978-94-007-2869-1_11.
  6. Tsutsui, H., Kinugawa, S., and Matsushima, S. (2008) Oxidative stress and mitochondrial DNA damage in heart failure, Circ. J., 72 Suppl A, A31-A37, https://doi.org/10.1253/circj.cj-08-0014.
  7. Li, W., He, P., Huang, Y., Li, Y. F., Lu, J., Li, M., Kurihara, H., Luo, Z., Meng, T., Onishi, M., Ma, C., Jiang, L., Hu, Y., Gong, Q., Zhu, D., Xu, Y., Liu, R., Liu, L., Yi, C., Zhu, Y., Ma, N., Okamoto, K., Xie, Z., Liu, J., He, R.-R., and Feng, D. (2021) Selective autophagy of intracellular organelles: recent research advances, Theranostics, 11, 222-256, https://doi.org/10.7150/thno.49860.
  8. Ashrafi, G., and Schwarz, T. L. (2013) The pathways of mitophagy for quality control and clearance of mitochondria, Cell Death Differ., 20, 31-42, https://doi.org/10.1038/cdd.2012.81.
  9. Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., May, J., Tocilescu, M. A., Liu, W., Ko, H. S., Magrane, J., Moore, D. J., Dawson, V. L., Grailhe, R., Dawson, T. M., Li, C., Tieu, K., and Przedborski, S. (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy, Proc. Natl. Acad. Sci. USA, 107, 378-383, https://doi.org/10.1073/pnas.0911187107.
  10. Chen, M., Chen, Z., Wang, Y., Tan, Z., Zhu, C., Li, Y., Han, Z., Chen, L., Gao, R., Liu, L., and Chen, Q. (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy, Autophagy, 12, 689-702, https://doi.org/10.1080/15548627.2016.1151580.
  11. Zhu, Y., Massen, S., Terenzio, M., Lang, V., Chen-Lindner, S., Eils, R., Novak, I., Dikic, I., Hamacher-Brady, A., and Brady, N. R. (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis, J. Biol. Chem., 288, 1099-1113, https://doi.org/10.1074/jbc. M112.399345.
  12. Wei, Y., Chiang, W. C., Sumpter, R., Jr., Mishra, P., and Levine, B. (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor, Cell, 168, 224-238.e210, https://doi.org/10.1016/j.cell.2016.11.042.
  13. Fassett, R. G., and Coombes, J. S. (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease, Mar. Drugs, 9, 447-465, https://doi.org/10.3390/md9030447.
  14. Song, X., Wang, B., Lin, S., Jing, L., Mao, C., Xu, P., Lv, C., Liu, W., and Zuo, J. (2014) Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway, J. Cell Mol. Med., 18, 2198-2212, https://doi.org/10.1111/jcmm.12347.
  15. Fan, C. D., Sun, J. Y., Fu, X. T., Hou, Y. J., Li, Y., Yang, M. F., Fu, X. Y., and Sun, B. L. (2017) Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage, Front. Physiol., 8, 1041, https://doi.org/10.3389/fphys.2017.01041.
  16. Liu, X., Shibata, T., Hisaka, S., and Osawa, T. (2009) Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism, Brain Res., 1254, 18-27, https://doi.org/10.1016/j.brainres.2008.11.076.
  17. Akila, P., Asaikumar, L., and Vennila, L. (2017) Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes, Biomed. Pharmacother., 85, 582-591, https://doi.org/10.1016/j.biopha.2016.11.067.
  18. Feng, W., and Li, W. (2010) The study of ISO induced heart failure rat model, Exp. Mol. Pathol., 88, 299-304, https://doi.org/10.1016/j.yexmp.2009.10.011.
  19. Odinokova, I., Baburina, Y., Kruglov, A., Fadeeva, I., Zvyagina, A., Sotnikova, L., Akatov, V., and Krestinina, O. (2018) Effect of melatonin on rat heart mitochondria in acute heart failure in aged rats, Int. J. Mol. Sci., 19, https://doi.org/10.3390/ijms19061555.
  20. Baburina, Y., Krestinin, R., Odinokova, I., Sotnikova, L., Kruglov, A., and Krestinina, O. (2019) Astaxanthin inhibits mitochondrial permeability transition pore opening in rat heart mitochondria, Antioxidants (Basel), 8, https://doi.org/10.3390/antiox8120576.
  21. Krestinin, R., Baburina, Y., Odinokova, I., Kruglov, A., Fadeeva, I., Zvyagina, A., Sotnikova, L., and Krestinina, O. (2020) Isoproterenol-induced permeability transition pore-related dysfunction of heart mitochondria is attenuated by astaxanthin, Biomedicines, 8, 437, https://doi.org/10.3390/biomedicines8100437.
  22. Krestinina, O., Baburina, Y., and Krestinin, R. (2021) Mitochondrion as a target of astaxanthin therapy in heart failure, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22157964.
  23. Krestinina, O., Baburina, Y., Krestinin, R., Odinokova, I., Fadeeva, I., and Sotnikova, L. (2020) Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria, Antioxidants (Basel), 9, 262, https://doi.org/10.3390/antiox9030262.
  24. Kim, D. E., Kim, B., Shin, H. S., Kwon, H. J., and Park, E. S. (2014) The protective effect of hispidin against hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblast cells through Akt/GSK-3beta and ERK1/2 signaling pathway, Exp. Cell Res., 327, 264-275, https://doi.org/10.1016/j.yexcr.2014.07.037.
  25. Carvalho, C., Santos, R. X., Cardoso, S., Correia, S., Oliveira, P. J., Santos, M. S., and Moreira, P. I. (2009) Doxorubicin: the good, the bad and the ugly effect, Curr. Med. Chem., 16, 3267-3285, https://doi.org/10.2174/ 092986709788803312.
  26. Kruger, N. J. (1994) The Bradford method for protein quantitation, Methods Mol. Biol., 32, 9-15, https:// doi.org/10.1385/0-89603-268-X:9.
  27. Baburina, Y., Krestinin, R., Fedorov, D., Odinokova, I., Pershina, E., Sotnikova, L., and Krestinina, O. (2022) The improvement of functional state of brain mitochondria with astaxanthin in rats after heart failure, Int. J. Mol. Sci., 24, https://doi.org/10.3390/ijms24010031.
  28. Крестинин Р. Р., Бабурина Ю. Л., Одинокова И. В., Сотникова Л. Д., Крестинина О. В. (2024) Астаксантин предотвращает дисрегуляцию митохондриальной динамики в митохондриях мозга крыс, индуцированную изопротеренолом, Биофизика, 69, 90-102.
  29. Carpenter, K. L., Kirkpatrick, P. J., Weissberg, P. L., Challis, I. R., Dennis, I. F., Freeman, M. A., and Mitchinson, M. J. (2003) Oral alpha-tocopherol supplementation inhibits lipid oxidation in established human atherosclerotic lesions, Free Radic Res., 37, 1235-1244, https://doi.org/10.1080/10715760310001604143.
  30. Ellingsen, I., Seljeflot, I., Arnesen, H., and Tonstad, S. (2009) Vitamin C consumption is associated with less progression in carotid intima media thickness in elderly men: a 3-year intervention study, Nutr. Metab. Cardiovasc. Dis., 19, 8-14, https://doi.org/10.1016/j.numecd.2008.01.006.
  31. Xuan, R. R., Niu, T. T., and Chen, H. M. (2016) Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation, Mol. Med. Rep., 14, 2697-2704, https://doi.org/10.3892/mmr. 2016.5569.
  32. Krestinin, R., Baburina, Y., Odinokova, I., Kruglov, A., Sotnikova, L., and Krestinina, O. (2023) The effect of astaxanthin on mitochondrial dynamics in rat heart mitochondria under iso-induced injury, Antioxidants (Basel), 12, https://doi.org/10.3390/antiox12061247.
  33. Krestinina, O., Odinokova, I., Sotnikova, L., Krestinin, R., Zvyagina, A., and Baburina, Y. (2022) Astaxanthin is able to prevent alcohol-induced dysfunction of liver mitochondria, Antioxidants (Basel), 11, 2019, https:// doi.org/10.3390/antiox11102019.
  34. Abdelzaher, L. A., Imaizumi, T., Suzuki, T., Tomita, K., Takashina, M., and Hattori, Y. (2016) Astaxanthin alleviates oxidative stress insults-related derangements in human vascular endothelial cells exposed to glucose fluctuations, Life Sci., 150, 24-31, https://doi.org/10.1016/j.lfs.2016.02.087.
  35. Mijaljica, D., Prescott, M., and Devenish, R. (2014) Mitophagy: An Overview, in Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, Academic Press, pp. 103-116.
  36. Lazarou, M., Jin, S. M., Kane, L. A., and Youle, R. J. (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin, Dev. Cell, 22, 320-333, https://doi.org/10.1016/j.devcel.2011.12.014.
  37. Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., and Youle, R. J. (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J. Cell Biol., 191, 933-942, https:// doi.org/10.1083/jcb.201008084.
  38. Narendra, D., Tanaka, A., Suen, D. F., and Youle, R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol., 183, 795-803, https://doi.org/10.1083/jcb.200809125.
  39. Billia, F., Hauck, L., Konecny, F., Rao, V., Shen, J., and Mak, T. W. (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function, Proc. Natl. Acad. Sci. USA, 108, 9572-9577, https://doi.org/10.1073/pnas.1106291108.
  40. Yan, C., Gong, L., Chen, L., Xu, M., Abou-Hamdan, H., Tang, M., Desaubry, L., and Song, Z. (2020) PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis, Autophagy, 16, 419-434, https://doi.org/10.1080/15548627.2019.1628520.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Viability of H9c2 cardiomyocytes after 24 h incubation with AST(a), H2O2(b) and Dox(c). Cells were seeded into a 96-well plate at a density of 2.5× 103 cells per well and treated with the indicated concentrations of AST(a), H2O2(b) and Dox(c) in H9c2 for 24 hours . The data is presented as the average ± standard deviation (SD) from ten separate experiments

Download (216KB)
3. Fig. 2. The dependence of the viability of H9c2 cardiomyocyte cells on the concentration of AST, H2O2, Dox and on the incubation time with AST. Cells with AST were incubated for 1 (a, d), 4 (b, e) and 6 (c, e) hours. The number of living cells in an intact culture (control, without drug treatment) was assumed to be 100%. The data is presented as an average ± SD from six separate experiments. The control consisted of untreated cells

Download (317KB)
4. Fig. 3. Cytotoxic effect of AST and its combined effect with H2O2 and Dox in H9c2 cardiomyocyte cells. As a positive control, cells treated with 1% Triton X-100 were used, which were mistaken for 100%. a is the number of dead cells in the presence of various concentrations of AST; b is the number of dead cells when using AST with H2O2 after 4 hours of incubation with AST; c is the number of dead cells when using AST with Dox after 6 hours of incubation with AST. The data is presented as the mean ± standard deviation (n = 8); * p < 0.05 is a significant change compared to the control (intact culture); # p < 0.05 is a significant change compared to the corresponding values of H2O2 or Dox

Download (290KB)
5. Fig. 4. The effect of AST, H2O2 and Dox on the change in ΔΨm in H9c2 cardiomyocyte cells. The fluorescence intensity of intact cells was used as a control (without drug treatment). a – Change in fluorescence intensity in the presence of AST (5 and 10 microns) and H2O2; b – change in fluorescence intensity in the presence of AST (5 and 10 microns) and Dox. Valinomycin (250 nM) was used as a positive control. The data are presented as the average value ± standard deviation (n = 6); * p < 0.05 is a significant change compared to the corresponding control (untreated cells); # p < 0.05 is a significant change compared to H2O2 or Dox

Download (206KB)
6. Fig. 5. Effect of AST, H2O2 and Dox on changes in intracellular ROS production in H9c2 cardiomyocyte cells. a – Change in fluorescence intensity in the presence of AST (5 and 10 microns) and H2O2; b – change in fluorescence intensity in the presence of AST (5 and 10 microns) and Dox. H2O2 (100 microns) was used as a positive control. The data are presented as mean ± standard deviation (n = 6); * p < 0.05 – significant change compared to the control (untreated cells); # p < 0.05 – significant change compared to H2O2 or Dox

Download (175KB)
7. Fig. 6. The effect of AST (10 µm), H2O2, and Dox on changes in PINK1 (a), Parkin(b), and RNB2 (c) levels in H9c2 cardiomyocyte cells. The upper part was immunostaining with antibodies to PINK1 (a), Parkin(b) and RNB2 (c); GAPDH was used as a protein load control. The lower part contains diagrams that quantify changes in the content of proteins normalized by GAPDH. The protein level in the cell lysate (without additives) served as a control (100%). The data are presented as the mean ± standard deviation (n = 4); * p < 0.05 is a significant change compared to the control; # p < 0.05 is a significant change compared to H2O2 or Dox

Download (228KB)

Copyright (c) 2024 Russian Academy of Sciences