Comparative Study of Spectral and Functional Properties of Reaction Centers of Wild Type and Double Mutant H(L173)L/I(L177)H of the Purple Bacterium Cereibacter sphaeroides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Previously, we found that in the reaction center (RC) of the purple bacterium Cereibacter sphaeroides, the formation of a heterodimeric primary electron donor (P), caused by the substitution of His-L173 by Leu, was compensated by a second mutation Ile-L177 – His. Significant changes in the spectral properties, pigment composition and redox potential of P, observed in the H(L173)L RC, are restored to the corresponding characteristics of the native RC in the RC H(L173)L/I(L177)H, with the difference that the energy of the long-wavelength QY optical transition of P increases significantly (by ~75 meV). In this work, using light-induced FTIR difference spectroscopy, it was shown that in the RC with double mutation, the homodimeric structure of P is preserved with partially altered electronic properties: the electronic coupling in the radical-cation of the P+ dimer is weakened and the localization of the positive charge on one of its halves increases. The results of the study of the triple mutant H(L173)L/I(L177)H/F(M197)H are consistent with the assumption that the observed changes in the P+ electronic structure, as well as considerable blue shift of QY P absorption band in the RC H(L173)L/ I(L177)H, are associated with a modification of the spatial position and/or geometry of P. Using femtosecond absorption difference spectroscopy, it was shown that the mutant H(L173)L/I(L177)H RC retains a sequence of reactions P* → P+BA− → P+HA− → P+QA− with electron transfer rates and the quantum yield of the final state P+QA− close to those observed in the wild-type RC (P* is the singlet-excited state of P; BA, HA, and QA are molecules of bacteriochlorophyll, bacteriopheophytin, and ubiquinone in the active A-branch of cofactors, respectively). The obtained results, together with previously published data for the RC with a symmetrical double mutation H(M202)L/I(M206)H, demonstrate that by introducing additional point amino acid substitutions, the photochemical activity of the isolated RC from C. sphaeroides can be maintained at a high level even in the absence of important structural elements – axial histidine ligands to the primary electron donor P.

Full Text

Restricted Access

About the authors

T. Yu. Fufina

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Author for correspondence.
Email: vsyulya@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

A. A. Zabelin

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: vsyulya@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

R. A. Khatypov

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: vsyulya@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

A. M. Khristin

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: vsyulya@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

A. Ya. Shkuropatov

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: vsyulya@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

L. G. Vasilieva

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: vsyulya@mail.ru
Russian Federation, 142290, Pushchino, Moscow Region

References

  1. Hordt, A., Lopez, M. G., Meier-Kolthoff, J. P., Schleuning, M., Weinhold, L.-M., Tindall, B. J., Gronow, S., Kyrpides, N. C., Woyke, T., and Göker, M. (2020) Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria, Front. Microbiol., 11, 468, https://doi.org/10.3389/fmicb.2020.00468.
  2. Cogdell, R. J., Gall, A., and Köhler, J. (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes, Q. Rev. Biophys., 39, 227-324, https://doi.org/10.1017/S0033583506004434.
  3. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1987) Structure of reaction center from Rhodobacter sphaeroides R-26: the cofactors, Proc. Natl. Acad. Sci. USA, 84, 5730-5734, https://doi.org/10.1073/pnas. 84.16.5730.
  4. Gorka, M., Baldansuren, A., Malnati, A., Gruszecki, E., Golbeck, J. H., and Lakshmi, K. V. (2021) Shedding light on primary donors in photosynthetic reaction centers, Front. Microbiol., 12, 1-31, https://doi.org/10.3389/fmicb.2021.735666.
  5. Леонова М. М., Фуфина Т. Ю., Шувалов В. А., Васильева Л. Г. (2014) Исследование пигмент-белковых взаимодействий в фотосинтетическом реакционном центре пурпурных бактерий, в кн.: Современные проблемы фотосинтеза. Том 1 (под ред. Аллахвердиева С. И., Рубина А. Б., Шувалова В. А.) Москва-Ижевск, Ижевский Институт компьютерных исследований, с. 157-196.
  6. Woodbury, N. W., and Allen, J. P. (1995) The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria, in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds) Kluwer Academic Publishers, Dordrecht, pp. 527-557, https://doi.org/10.1007/0-306-47954-0_24.
  7. Parson, W. W. (2008) Functional patterns of reaction centers in anoxygenic photosynthetic bacteria, in Primary Processes of Photosynthesis, Part 2 Principles and Apparatus (Renger, G., ed) RSC Publishing, Cambridge, pp. 57-109, https://doi.org/10.1039/9781847558 169-00057.
  8. Spiedel, D., Roszak, A. W., McKendrick, K., McAuley, K. E., Fyfe, P. K., Nabedryk, E., Breton, J., Robert, B., Cogdell, R. J., Isaacs, N. W., and Jones, M. R. (2002) Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure, Biochim. Biophys. Acta, 1554, 75-93, https://doi.org/10.1016/s0005-2728(02)00215-3.
  9. Heimdal, J., Jensen, K. P., Devarajan, A., and Ryde, U. (2007) The role of axial ligands for the structure and function of chlorophylls, J. Biol. Inorg. Chem., 12, 49-61, https://doi.org/10.1007/s00775-006-0164-z.
  10. Фуфина Т. Ю., Леонова М. М., Хатыпов Р. А., Христин, А. М., Шувалов В. А., Васильева Л. Г. (2019) Особенности аксиального лигандирования бактериохлорофиллов в фотосинтетическом реакционном центре пурпурных бактерий, Биохимия, 84, 509-519, https://doi.org/10.1134/S0006297919040047.
  11. Williams, J. C., Alden, R. G., Murchison, H. A., Peloquin, J. M., Woodbury, N. W., and Allen, J. P. (1992) Effect of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides, Biochemistry, 31, 11029-11037, https://doi.org/10.1021/bi00160a012.
  12. Wakeham, M. C., and Jones, M. R. (2005) Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre, Biochem. Soc. Trans., 33, 851-857, https://doi.org/10.1042/BST0330851.
  13. Jones, M. R. (2009) Structural plasticity of reaction centers from purple bacteria, In: The Purple Phototrophic Bacteria (Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T., eds) Vol. 28 Springer, Dordrecht, The Netherlands, pp. 295-321.
  14. Allen, J. P., and Williams, J. C. (2011) The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers, Photosynth. Res., 107, 59-69, https://doi.org/10.1007/s11120-010-9552-x.
  15. Goldsmith, J. O., King, B., and Boxer, S. G. (1996) Mg coordination by amino acid side chains is not required for assembly and function of the special pair in bacterial photosynthetic reaction centers, Biochemistry, 35, 2421-2428, https://doi.org/10.1021/bi952 3365.
  16. Nabedryk, E., Schulz, C., Müh, F., Lubitz, W., and Breton, J. (2000) Heterodimeric versus homodimeric structure of the primary electron donor in Rhodobacter sphaeroides reaction centers genetically modified at position M202, Photochem. Photobiol., 71, 582-588, https://doi.org/10.1562/0031-8655(2000)071<0582:hvhsot>2.0.co;2.
  17. Bylina, E. J., Kolaczkowski, S. V., Norris, J. R., and Youvan, D. C. (1990) EPR characterization of genetically modified reaction centers of Rhodobacter capsulatus, Biochemistry, 29, 6203-6210, https://doi.org/10.1021/ bi00478a013.
  18. Katilius, E., Turanchik, T., Lin, S., Taguchi, A. K. W., and Woodbury, N. W. (1999) B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin, J. Phys. Chem. B, 103, 7386-7389, https://doi.org/10.1021/jp991670y.
  19. Katilius, E., Babendure, J. L., Lin, S., and Woodbury, N. W. (2004) Electron transfer dynamics in Rhodobacter sphaeroides reaction center mutants with a modified ligand for the monomer bacteriochlorophyll on the active side, Photosynth. Res., 81, 165-180, https://doi.org/10.1023/B:PRES.0000035048.10358.90.
  20. McDowell, L., Gaul, D., Kirmaier, C., Holten, D., and Schenck, C. C. (1991) Investigation into the source of electron transfer asymmetry in bacterial reaction centers, Biochemistry, 30, 8315-8322, https://doi.org/10.1021/bi00098a006.
  21. Laporte, L. L., Palaniappan, V., Davis, D. G., Kirmaier, C., Schenck, C. C., Holten, D., and Bocian, D. F. (1996) Influence of electronic asymmetry on the spectroscopic and photodynamic properties of the primary electron donor in the photosynthetic reaction center, J. Phys. Chem., 100, 17696-17707, https://doi.org/10.1021/jp961658v.
  22. Allen, J. P., Artz, K., Lin, X., Williams, J. C., Ivancich, A., Albouy, D., Mattioli, T. A., Fetsch, A., Kuhn, M., and Lubitz, W. (1996) Effects of hydrogen bonding to a bacteriochlorophyll–bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides, Biochemistry, 35, 6612-6619, https://doi.org/10.1021/bi9528311.
  23. Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., and Shuvalov, V. A. (2013) Spectral properties of the Rhodobacter sphaeroides mutant photo-reaction center with double amino acid substitution I(L177)H+H(L173)L, In Photosynthesis Research for Food, Fuel and the Future, Advanced Topics in Science and Technology in China, 46-49, https://doi.org/10.1007/978-3-642-32034-7_9.
  24. Khristin, A. M., Zabelin, A. A., Fufina, T. Y., Khatypov, R. A., Proskuryakov, I. I., Shuvalov, V. A., Shkuropatov, A. Y., and Vasilieva, L. G. (2020) Mutation H(M202)L does not lead to the formation of heterodimer of the primary electron donor in reaction center of Rhodobacter sphaeroides when combined with mutation I(M206)H, Photosynth. Res., 146, 109-121, https://doi.org/10.1007/s11120-020-00728-9.
  25. Lin, X., Murchison, H. A., Nagarajan, V., Parson, W. W., Allen, J. P., and Williams, J. C. (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides, Proc. Natl. Acad. Sci. USA, 91, 10265-10269.
  26. Fufina, T. Y., Selikhanov, G. K., Gabdulkhakov, A. G., and Vasilieva, L. G. (2023) Properties and crystal structure of the Cereibacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H + F(M197)H, Membranes, 13, 157, https://doi.org/10.3390/membranes13020157.
  27. Holden-Dye, K., Crouch, L. I., Williams, C. M., Bone, R. A., Cheng, J., Böhles, F., Heathcote, P., and Jones, M. R. (2011) Opposing structural changes in two symmetrical polypeptides bring about opposing changes to the thermal stability of a complex integral membrane protein, Arch. Biochem. Biophys., 505, 160-170, https://doi.org/10.1016/j.abb.2010.09.029.
  28. Kangur, L., Jones, M. R., and Freiberg, A. (2017) Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy, Biophys. Chem., 231, 27-33, https://doi.org/10.1016/j.bpc.2017.04.003.
  29. Selikhanov, G., Fufina, T., Guenther, S. Meents, A., Gabdulkhakov, A., and Vasilieva, L. (2022) X-ray structure of the Rhodobacter sphaeroides reaction center with an M197 Phe→His substitution clarifies the properties of the mutant complex, IUCrJ, 9, 261-271, https://doi.org/10.1107/S2052252521013178.
  30. Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Leonova, M. M., Khatypov, R. A. and Shuvalov, V. A. (2012) The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of P(A) and B(B) bacteriochlorophylls, Biochim. Biophys. Acta, 1817, 1407-1417, https://doi.org/10.1016/j.bbabio.2012.02.008.
  31. Keen, N. T., Tamaki, S., Kobayashi, D., and Trollinger, D. (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria, Gene, 70, 191-197, https://doi.org/10.1016/0378-1119(88)90117-5.
  32. Хатыпов Р. А., Васильева Л. Г., Фуфина Т. Ю., Болгарина Т. И., Шувалов В. А. (2005) Влияние замещения изолейцина L177 гистидином на пигментный состав и свойства реакционных центров пурпурной бактерии Rhodobacter sphaeroides, Биохимия, 70, 1527-1533, https://doi.org/10.1007/s10541-005-0256-3.
  33. Jones, M. R., Visschers, R. W., van Grondelle, R., and Hunter, C. N. (1992) Construction and characterization of a mutant strain of Rhodobacter sphaeroides with the reaction center as the sole pigment-protein complex, Biochemistry, 31, 4458-4465, https://doi.org/10.1021/bi00133a011.
  34. Cohen-Basire, G., Sistrom, W. R., and Stanier, R. Y. (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell Comp. Physiol., 49, 25-68, https://doi.org/10.1002/jcp.1030490104.
  35. Goldsmith, J. O., and Boxer, S. G. (1996) Rapid isolation of bacterial photosynthetic reaction centers with an engineered poly-histidine tag, Biochim. Biophys. Acta, 1276, 171-175, https://doi.org/10.1016/0005-2728(96)00091-6.
  36. Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Y. and Shuvalov, V. A. (2007) Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit, FEBS Lett., 581, 5769-5773, https://doi.org/10.1016/j.febslet.2007.11.032.
  37. Фуфина Т. Ю., Васильева Л. Г. (2021) Влияние детергентов и осмолитов на термостабильность нативных и мутантных реакционных центров Rhodobacter sphaeroides, Биохимия, 86, 607-614, https://doi.org/10.31857/S0320972521040126.
  38. Delano, W. L. (2022) The PyMOL Molecular Graphics System, URL: http://www.pymol.org (accessed on 8 November 2022).
  39. Фуфина Т. Ю., Третчикова О. А., Христин А. М., Хатыпов Р. А., Васильева Л. Г. (2022) Свойства мутантных фотосинтетических реакционных центров пурпурной бактерии Cereibacter sphaeroides с замещением M206 Ile → Gln, Биохимия, 87, 1447-1458, https://doi.org/10.1134/S000629792210008X.
  40. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M., and van Stokkum, I. H. M. (2012) Glotaran: a Java-based graphical user interface for the R package TIMP, J. Stat. Soft, 49, 1-22, https://doi.org/10.18637/jss.v049.i03.
  41. Murchison, H. A., Alden, R. G., Allen, J. P., Peloquin, J. M., Taguchi, A. K., Woodbury, N. W., and Williams J. C. (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168, Biochemistry, 32, 3498-3505, https://doi.org/10.1021/bi00064a038.
  42. Fyfe, P. K., and Jones, M. R. (2000) Re-emerging structures: continuing crystallography of the bacterial reaction centre, Biochim. Biophys. Acta, 1459, 413-421, https://doi.org/10.1016/s0005-2728(00)00179-1.
  43. Zucchelli, G., Brogioli, D., Casazza, A. P., Garlaschi, F. M., and Jennings, R. C. (2007) Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms, Biophys. J., 93, 2240-2254, https://doi.org/10.1529/biophysj.107.104554.
  44. Breton, J., Nabedryk, E., and Parson, W. W. (1992) A new infrared electronic transition of the oxidized primary electron donor in bacterial reaction centers: a way to assess resonance interactions between the bacteriochlorophylls, Biochemistry, 31, 7503-7510, https://doi.org/10.1021/bi00148a010.
  45. Reimers, J. R., and Hush, N. S. (2003) Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole-transfer absorption spectrum of the special-pair radical cation, J. Chem. Phys., 119, 3262-3277, https://doi.org/10.1063/1.1589742.
  46. Naberdyk, E., Allen, J. P., Taguchi, A. K. W., Williams, J. C., Woodbury, N. W., and Breton, J. (1993) Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131, Biochemistry, 32, 13879-13885, https://doi.org/10.1021/bi00213a017.
  47. Malferrari, M., Turina, P., Francia, F., Mezzetti, A., Leibl, W., and Venturoli, G. (2015) Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy, Photochem. Photobiol. Sci., 14, 238-251, https://doi.org/10.1039/c4pp00245h.
  48. Van Stokkum, I. H. M., Larsen, D. S., and van Grondelle, R. (2004) Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 1657, 82-104, https://doi.org/10.1016/j.bbabio.2004.04.011.
  49. Zinth, W., and Wachtveitl, J. (2005) The first picoseconds in bacterial photosynthesis – ultrafast electron transfer for the efficient conversion of light energy, Chem. Phys. Chem., 6, 871-880, https://doi.org/10.1002/cphc.200400458.
  50. Dominguez, P. N., Himmelstoss, M., Michelmann, J., Lehner, F. T., Gardiner, A. T., Cogdell, R. J., and Zinth, W. (2014) Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides – time constants of the initial electron transfer, Chem. Phys. Lett., 601, 103-109, https://doi.org/10.1016/j.cplett.2014.03.085.
  51. Fajer, J., Brune, D. C., Davis, M. S., Forman, A., and Spaulding, L. D. (1975) Primary charge separation in bacterial photosynthesis: oxidized chlorophylls and reduced pheophytin, Proc. Natl. Acad. Sci. USA, 72, 4956-4960, https://doi.org/10.1073/pnas.72.12.4956.
  52. Weaver, J. B., Lin, C.-Y., Faries, K. M., Mathews, I. I., Russi, S., Holten, D., Kirmaier, C., and Boxer, S. G. (2021) Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism, Proc. Natl. Acad. Sci. USA, 118, e2116439118, https://doi.org/10.1073/pnas.2116439118.
  53. Milanovsky, G. E., Shuvalov, V. A., Semenov, A. Y., and Cherepanov, D. A. (2015) Elastic vibrations in the photosynthetic bacterial reaction center coupled to the primary charge separation: implications from molecular dynamics simulations and stochastic Langevin approach, J. Phys. Chem. B, 119, 13656-13667, https://doi.org/10.1021/acs.jpcb.5b03036.
  54. Ma, F., Romero, E., Jones, M. R., Novoderezhkin, V. I., and van Grondelle, R. (2019) Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center, Nat. Commun., 10, 933, https://doi.org/10.1038/s41467-019-08751-8.
  55. Ma, F., Yu, L.-J., Wang-Otomo, Z.-Y., and van Grondelle, R. (2016) Temperature dependent LH1 → RC energy transfer in purple bacteria Tch. tepidum with shiftable LH1-Qy band: a natural system to investigate thermally activated energy transfer in photosynthesis, Biochim. Biophys. Acta, 1857, 408-414, https://doi.org/ 10.1016/j.bbabio.2015.12.006.
  56. Friebe, V. M., and Frese, R. N. (2017) Photosynthetic reaction center-based biophotovoltaics, Curr. Opin. Electrochem., 5, 126-134, https://doi.org/10.1016/j.coelec.2017.08.001.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the reaction centre of C. sphaeroides (PDB ID: 3v3y) (a). L, L-subunit; M, M-subunit; H, H-subunit; P, dimer of BChl molecules; BA and BB, monomeric BChl molecules; HA and HB, monomeric Bfeo molecules; QA and QB, ubiquinones; car, carotenoid. The yellow arrow shows the electron transfer pathway in RC. Protein environment of bacteriochlorophylls in the structure of wild-type RCs (b). The location of symmetrical residues His-L173 and -M202, Ile-M206 and -L177, His-L168 and Phe-M197 is shown. In the structure of monomeric BHL BB, the 2-acetyl and 9-keto groups of the macrocycle are marked by numbers. The dotted lines show coordination and H-bonds between BChl molecules and the protein

Download (220KB)
3. Fig. 2. Electronic absorption spectra of wild-type C. sphaeroides RC (1) and H(L173)L/I(L177)H(2) and H(L173)L/I(L177)H/F(M197)H(3) mutants measured at room temperature (a) and 100 K (b). The spectra are normalized in the absorption band QY H at 760 nm

Download (171KB)
4. Fig. 3. Thermally dependent change in the amplitude of the QY B band in the wild-type C. sphaeroides RC (■), RC H(L173)L/I(L177)H(▲) and RC H(L173)L/I(L177)H/F(M197)H(●) at 48 °C

Download (86KB)
5. Fig. 4. Photoinduced differential (light-minus-dark) IR Fourier spectra of P+Q-/PQ wild-type C. sphaeroides RC (1), mutant RC H(L173)L/I(L177)H(2) and RC H(L173)L/I(L177)H/F(M197)H(3), measured at room temperature. a is the spectral range of 4500-1100 cm -1. The spectra are normalized by the amplitude of the differential signal at ~1750/~1740 cm -1. The region at ~3700-3070 cm -1, saturated due to strong absorption of the sample and water, is excluded from the figure. b is the low–frequency spectral range of 1800-1100 cm−1 from panel (a), shown on an enlarged scale

Download (255KB)
6. Fig. 5. DADS for wild-type C. sphaeroides RC (a, b) and double mutant RC H(L173)L/I(L177)H (c, d) in the visible (500-720 nm) and near-infrared (750-1050 nm) spectral regions. The inserts on panels (b) and (d) show spectral features in the range of 980-1050 nm on the ΔA scale, increased by 2.5 times

Download (286KB)
7. Fig. 6. Target analysis of spectral-temporal data for wild-type C. sphaeroides RC and double mutant RC H(L173)L/I(L177)H. a is the kinetic model used in the analysis. b and c are concentration profiles of states for wild–type RC and H(L173)L/I(L177)H, respectively. The time scale is represented on a logarithmic scale

Download (190KB)
8. Fig. 7. SADS (species associated difference spectra) for wild-type C. sphaeroides RC (black) and double mutant RC H(L173)L/I(L177)H (gray), obtained as a result of target analysis using the model shown in Fig. 6, a. a – are shown lifetimes of states; b – states are indicated; n.z. – undamped

Download (230KB)

Copyright (c) 2024 Russian Academy of Sciences