Changes of transcriptomic activity in rat brain cells under the influence of synthetic adrenocorticotropic hormone-like peptides
- Authors: Filippenkov I.B.1, Glazova N.Y.1,2, Sebentsova E.A.1,2, Stavchansky V.V.1, Andreeva L.A.1, Myasoedov N.F.1, Levitskaya N.G.1,2, Limborska S.A.1, Dergunova L.V.1
-
Affiliations:
- National Research Centre “Kurchatov Institute”
- Lomonosov Moscow State University
- Issue: Vol 89, No 9 (2024)
- Pages: 1590-1604
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/676573
- DOI: https://doi.org/10.31857/S0320972524090094
- EDN: https://elibrary.ru/JJQHJG
- ID: 676573
Cite item
Abstract
Synthetic peptides have a wide range of clinical effects. Of particular interest are peptides based on adrenocorticotropic hormone (ACTH) both as already used and as potential drugs for preventing the consequences of cerebral ischemia. However, it is necessary to study the peptide influence on brain cells under normal physiological conditions, including understanding the risks of their use. Here, we used high-throughput RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in the frontal cortex of rats receiving intraperitoneal administration of ACTH-like peptides ACTH(4-7)PGP (Semax) and ACTH(6–9)PGP or saline. We identified 258 and 228 DEGs, respectively, with a threshold of > 1.5 and Padj < 0.05 at 22.5 hours after the first administration of Semax and ACTH(6-9)PGP. Metabolic pathways, characterizing both the general and specific effects of peptides on the transcriptome were identified. Both peptides predominantly caused a decrease in the expression of genes associated with the immune system. At the same time, when comparing the effects of ACTH(6-9)PGP relative to Semax, DEGs were identified that characterized the main differences in the effects of the peptides. These genes were mostly downregulated and associated with neurosignaling systems and regulation of ion channels and characterized differences in the effects of peptides. Our data show how differences in the structure of ACTH derivatives are associated with changes in the brain cell transcriptome following exposure to these related peptides. Furthermore, our results evident that when studying the influence of regulatory peptides on the transcriptome in pathological conditions, it is necessary to take into account their actions under normal physiological conditions.
Keywords
Full Text

About the authors
I. B. Filippenkov
National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow
N. Y. Glazova
National Research Centre “Kurchatov Institute”; Lomonosov Moscow State University
Email: filippenkov-ib.img@yandex.ru
Faculty of Biology
Russian Federation, 123182 Moscow; 119991 MoscowE. A. Sebentsova
National Research Centre “Kurchatov Institute”; Lomonosov Moscow State University
Email: filippenkov-ib.img@yandex.ru
Faculty of Biology
Russian Federation, 123182 Moscow; 119991 MoscowV. V. Stavchansky
National Research Centre “Kurchatov Institute”
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow
L. A. Andreeva
National Research Centre “Kurchatov Institute”
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow
N. F. Myasoedov
National Research Centre “Kurchatov Institute”
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow
N. G. Levitskaya
National Research Centre “Kurchatov Institute”; Lomonosov Moscow State University
Email: filippenkov-ib.img@yandex.ru
Faculty of Biology
Russian Federation, 123182 Moscow; 119991 MoscowS. A. Limborska
National Research Centre “Kurchatov Institute”
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow
L. V. Dergunova
National Research Centre “Kurchatov Institute”
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow
References
- Lee, A. C. L., Harris, J. L., Khanna, K. K., and Hong, J. H. (2019) A comprehensive review on current advances in peptide drug development and design, Int. J. Mol. Sci., 20, 2383, https://doi.org/10.3390/ijms20102383.
- Apostolopoulos, V., Bojarska, J., Chai, T. T., Elnagdy, S., Kaczmarek, K., Matsoukas, J., New, R., Parang, K., Lopez, O. P., Parhiz, H., Perera, C. O., Pickholz, M., Remko, M., Saviano, M., Skwarczynski, M., Tang, Y., Wolf, W. M., Yoshiya, T., Zabrocki, J., Zielenkiewicz, P., AlKhazindar, M., Barriga, V., Kelaidonis, K., Sarasia, E. M., and Toth, I. (2021) A global review on short peptides: frontiers and perspectives, Molecules., 26, 430, https://doi.org/10.3390/molecules26020430.
- Lubell, W. D. (2022) Peptide-based drug development, Biomedicines, 10, 2037, https://doi.org/10.3390/biomedicines10082037.
- Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., and Fu, C. (2022) Therapeutic peptides: current applications and future directions, Signal. Transduct. Target. Ther., 7, 48, https://doi.org/10.1038/s41392-022-00904-4.
- Deigin, V. I., Poluektova, E. A., Beniashvili, A. G., Kozin, S. A., and Poluektov, Y. M. (2022) Development of peptide biopharmaceuticals in Russia, Pharmaceutics, 14, 716, https://doi.org/10.3390/pharmaceutics14040716.
- Starowicz, K., and Przewłocka, B. (2003) The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception, Life Sci., 73, 823-847, https://doi.org/10.1016/S0024-3205(03)00349-7.
- Adan, R. A. H., and Gispen, W. H. (1997) Brain melanocortin receptors: from cloning to function, Peptides, 18, 1279-1287, https://doi.org/10.1016/S0196-9781(97)00078-8.
- Catania, A., Gatti, S., Colombo, G., and Lipton, J. M. (2004) Targeting melanocortin receptors as a novel strategy to control inflammation, Pharmacol. Rev., 56, 1-29, https://doi.org/10.1124/pr.56.1.1.
- Cone, R. D. (2005) Anatomy and regulation of the central melanocortin system, Nat. Neurosci., 8, 571-578, https://doi.org/10.1038/nn1455.
- Giuliani, D., Minutoli, L., Ottani, A., Spaccapelo, L., Bitto, A., Galantucci, M., Altavilla, D., Squadrito, F., and Guarini, S. (2012) Melanocortins as potential therapeutic agents in severe hypoxic conditions, Front. Neuroendocrinol., 33, 179-193, https://doi.org/10.1016/j.yfrne.2012.04.001.
- Wikberg, J. (2001) Melanocortin receptors: new opportunities in drug discovery, Exp. Opin. Ther. Patents, 11, 61, https://doi.org/10.1517/13543776.11.1.61.
- Гусев Е. И., Мартынов М. Ю., Костенко Е. В., Петрова Л. В., Бобырёва С. Н. (2018) Эффективность семакса при лечении больных на разных стадиях ишемического инсульта, Журн. Неврол. Психиатр., 3, 61-68.
- Potaman, V. N., Alfeeva, L. Y., Kamensky, A. A., Levitzkaya, N. G., and Nezavibatko, V. N. (1991) N-terminal degradation of ACTH(4-10) and its synthetic analog semax by the rat blood enzymes, Biochem. Biophys. Res. Commun., 176, 741-746, https://doi.org/10.1016/S0006-291X(05)80247-5.
- Agapova, T. Y., Agniullin, Y. V., Shadrina, M. I., Shram, S. I., Slominsky, P. A., Lymborska, S. A., and Myasoedov, N. F. (2007) Neurotrophin gene expression in rat brain under the action of Semax, an analogue of ACTH 4-10, Neurosci. Lett., 417, 201-205, https://doi.org/10.1016/j.neulet.2007.02.042.
- Полунин Г. С., Нуриева С. М., Баяндин Д. Л., Шеремет Н. Л., Андреева Л. А. (2000) Определение терапевтической эффективности нового отечественного препарата «семакс» при заболеваниях зрительного нерва, Вестник Офтальмол., 116, 15-18.
- Filippenkov, I. B., Stavchansky, V. V., Glazova, N. Y., Sebentsova, E. A., Remizova, J. A., Valieva, L. V., Levitskaya, N. G., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2021) Antistress action of melanocortin derivatives associated with correction of gene expression patterns in the hippocampus of male rats following acute stress, Int. J. Mol. Sci., 22, 34576218, https://doi.org/10.3390/ijms221810054.
- Vorvul, A. O., Bobyntsev, I. I., Medvedeva, O. A., Mukhina, A. Y., Svishcheva, M. V., Azarova, I. E., Andreeva, L. A., and Myasoedov, N. F. (2022) ACTH(6-9)-Pro-Gly-Pro ameliorates anxiety-like and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress, Neuropeptides, 93, 35487169, https://doi.org/10.1016/j.npep.2022.102247.
- Бакаева З. В., Сурин А. М., Лизунова Н. В., Згодова А. Е., Красильникова И. А., Фисенко А. П., Фролов Д. А., Андреева Л. А., Мясоедов Н. Ф., Пинелис В. Г. (2020) Нейропротекторный потенциал пептидов HFRWPGP (ACTH6-9PGP), KKRRPGP, PYRRP в культивируемых корковых нейронах при глутаматной эксайтотоксичности, Докл. Росс. Акад. Наук Науки о Жизни, 491, 62-66, https://doi.org/10.31857/S2686738920020067.
- Akimov, M. G., Fomina-Ageeva, E. V., Dudina, P. V., Andreeva, L. A., Myasoyedov, N. F., and Bezuglov, V. V. (2021) ACTH(6–9)PGP peptide protects SH-SY5Y cells from H2O2, tert-butyl hydroperoxide, and cyanide cytotoxicity via stimulation of proliferation and induction of prosurvival-related genes, Molecules, 26, 1878, https://doi.org/10.3390/molecules26071878.
- Wang, C.-M., Pan, Y.-Y., Liu, M.-H., Cheng, B.-H., Bai, B., and Chen, J. (2017) RNA-seq expression profiling of rat MCAO model following reperfusion Orexin-A, Oncotarget, 8, 113066-113081, https://doi.org/10.18632/oncotarget.22995.
- Tian, R., Deng, A., Pang, X., Chen, Y., Gao, Y., Liu, H., and Hu, Z. (2022) VR-10 polypeptide interacts with CD36 to induce cell apoptosis and autophagy in choroid-retinal endothelial cells: identification of VR-10 as putative novel therapeutic agent for choroid neovascularization (CNV) treatment, Peptides, 157, 170868, https://doi.org/10.1016/ j.peptides.2022.170868.
- Zhang, Q., Liu, C., Shi, R., Zhou, S., Shan, H., Deng, L., Chen, T., Guo, Y., Zhang, Z., Yang, G. Y., Wang, Y., and Tang, Y. (2022) Blocking C3d+/GFAP+ A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke, Aging Dis., 13, 943-959, https://doi.org/10.14336/AD.2021.1029.
- Filippenkov, I. B., Stavchansky, V. V., Denisova, A. E., Yuzhakov, V. V., Sevan’kaeva, L. E., Sudarkina, O. Y., Dmitrieva, V. G., Gubsky, L. V., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2022) Novel insights into the protective properties of ACTH(4–7)PGP (Semax) peptide at the transcriptome level following cerebral ischaemia-reperfusion in rats, Genes (Basel), 11, 681, https://doi.org/10.3390/genes11060681.
- Medvedeva, E. V., Dmitrieva, V. G., Povarova, O. V., Limborska, S. A., Skvortsova, V. I., Myasoedov, N. F., and Dergunova, L. V. (2014) The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis, BMC Genomics, 15, 228, https://doi.org/10.1186/1471-2164-15-228.
- Medvedeva, E. V., Dmitrieva, V. G., Limborska, S. A., Myasoedov, N. F., and Dergunova, L. V. (2017) Semax, an analog of ACTH(4–7), regulates expression of immune response genes during ischemic brain injury in rats, Mol. Genet. Genomics, 292, 635-653, https://doi.org/10.1007/s00438-017-1297-1.
- Filippenkov, I. B., Remizova, J. A., Stavchansky, V. V., Denisova, A. E., Gubsky, L. V., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2023) Synthetic adrenocorticotropic peptides modulate the expression pattern of immune genes in rat brain following the early post-stroke period, Genes (Basel), 14, 1382, https://doi.org/10.3390/genes14071382.
- Ashmarin, I., Nezavibatko, V., Levitskaya, N., Koshelev, V., and Kamensky, A. (1995) Design and investigation of an ACTH(4-10) analog lacking D-amino acids and hydrophobic radicals, Neurosci. Res. Commun., 16, 105-112.
- Miasoedova, N. F., Skvortsova, V. I., Nasonov, E. L., Zhuravleva, E. I., Grivennikov, I. A., Arsen’eva, E. L., and Sukhanov, I. I. (1999) Investigation of mechanisms of neuro-protective effect of semax in acute period of ischemic stroke [in Russian], Zhurn. Nevrol. Psikhiatr. Im. S. S. Korsakova, 99, 15-19.
- Медведева Е. В., Дмитриева В. Г., Поварова О. В., Лимборская С. А., Скворцова В. И., Мясоедов Н. Ф., Дергунова Л. В. (2014) Трипептид PRO-GLY-PRO влияет на транскриптом коры головного мозга крыс в условиях фокальной ишемии, Мол. Биол., 48, 277, https://doi.org/10.7868/S0026898414020128.
- Шубина Т. А., Григорьева М. Е., Ляпина Л. А., Оберган Т. Ю., Мясоедов Н. Ф., Андреева Л. А. (2014) Гипогликемическая и противосвертывающая активность тетрапептида PRO-GLY-PRO-LEU при гиперхолестеринемии, Бюлл. Эксп. Биол. Мед., 158, 35-39.
- Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 55, 611-622, https://doi.org/10.1373/clinchem.2008.112797.
- Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44-57, https://doi.org/10.1038/nprot.2008.211.
- Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, 102, 15545-15550, https://doi.org/10.1073/pnas.0506580102.
- Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., and Wishart, D. S. (2016) Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res., 44, W147-W153, https://doi.org/10.1093/nar/gkw419.
- Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software Environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498-2504, https://doi.org/10.1101/gr.1239303.
- Pintér, E., Pozsgai, G., Hajna, Z., Helyes, Z., and Szolcsányi, J. (2014) Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions, Br. J. Clin. Pharmacol., 77, 5-20, https://doi.org/10.1111/bcp.12097.
- Дергунова Л. В., Дмитриева В. Г., Филиппенков И. Б., Ставчанский В. В., Денисова А. Е., Южаков В. В., Севанькаева Л. Е., Валиева Л. В., Сударкина О. Ю., Губский Л. В., Мясоедов Н. Ф., Лимборская С. А. (2021) Пептидный препарат AKTГ(4-7)PGP (семакс) подавляет транскрипцию генов провоспалительных медиаторов, индуцированную обратимой ишемией мозга крыс, Мол. Биол., 55, 402-411, https://doi.org/10.31857/S0026898421010043.
- Bhaumik, S., and Basu, R. (2017) Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response, Front. Immunol., 8, 254, https://doi.org/10.3389/fimmu.2017.00254.
- Zhou, L., Chong, M. M. W., and Littman, D. R. (2009) Plasticity of CD4+ T cell lineage differentiation, Immunity, 30, 646-655, https://doi.org/10.1016/j.immuni.2009.05.001.
- Lee, I. F., Wang, X., Hao, J., Akhoundsadegh, N., Chen, L., Liu, L., Langermann, S., Ou, D., and Warnock, G. L. (2013) B7-H4.Ig inhibits the development of Type 1 diabetes by regulating Th17 cells in NOD mice, Cell. Immunol., 282, 1-8, https://doi.org/10.1016/j.cellimm.2013.03.005.
- Zou, Y., Zhang, J., Sun, F., Xu, Q., Chen, L., Luo, X., Wang, T., Zhou, Q., Zhang, S., Xiong, F., Kong, W., Yang, P., Yu, Q., Liu, S., and Wang, C. Y. (2024) Fluvoxamine inhibits Th1 and Th17 polarization and function by repressing glycolysis to attenuate autoimmune progression in type 1 diabetes, Mol. Med., 30, 23, https://doi.org/10.1186/s10020-024-00791-1.
- Balakrishnan, K., Hleihil, M., Bhat, M.A., Ganley, R. P., Vaas, M., Klohs, J., Zeilhofer, H. U., and Benke, D. (2022) Targeting the interaction of GABAB receptors with CaMKII with an interfering peptide restores receptor expression after cerebral ischemia and inhibits progressive neuronal death in mouse brain cells and slices, Brain Pathol., 33, e13099, https://doi.org/10.1111/bpa.13099.
- Hleihil, M., Balakrishnan, K., and Benke, D. (2022) Protein phosphatase 2A regulation of GABA B receptors normalizes ischemia-induced aberrant receptor trafficking and provides neuroprotection, Front. Mol. Neurosci., 15, 1015906, https://doi.org/10.3389/fnmol.2022.1015906.
- Chen, M., Zhang, X., Fan, J., Sun, H., Yao, Q., Shi, J., Qu, H., Du, S., Cheng, Y., Ma, S., Zhang, M., and Zhan, S. (2021) Dynorphin A (1-8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels, Neuropeptides, 89, 34298371, https://doi.org/10.1016/j.npep.2021.102182.
- Paul, S., and Candelario-Jalil, E. (2021) Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies, Exp. Neurol., 335, 113518, https://doi.org/10.1016/ j.expneurol.2020.113518.
- Ballarin, B., and Tymianski, M. (2018) Discovery and development of NA-1 for the treatment of acute ischemic stroke, Acta. Pharmacol. Sin., 39, 661-668, https://doi.org/10.1038/aps.2018.5.
- Malyshev, A. V., Sukhanova, I. A., Ushakova, V. M., Zorkina, Y. A., Abramova, O. V., Morozova, A. Y., Zubkov, E. A., Mitkin, N. A., Pavshintsev, V. V., Doronin, I. I., Gedzun, V. R., Babkin, G. A., Sanchez, S. A., Baker, M. D., and Haile, C. N. (2022) Peptide LCGA-17 attenuates behavioral and neurochemical deficits in rodent models of PTSD and depression, Pharmaceuticals (Basel), 15, 462, https://doi.org/10.3390/ph15040462.
- Shibato, J., Takenoya, F., Yamashita, M., Gupta, R., Min, C. W., Kim, S. T., Kimura, A., Takasaki, I., Hori, M., Shioda, S., and Rakwal, R. (2023) OMICS analyses unraveling related gene and protein-driven molecular mechanisms underlying PACAP 38-induced neurite outgrowth in PC12 cells, Int. J. Mol. Sci., 24, 4169, https://doi.org/10.3390/ijms24044169.
- Stavchansky, V. V., Filippenkov, I. B., Remizova, J. A., Denisova, A. E., Mozgovoy, I. V., Gubsky, L. V., Myasoedov, N. F., Andreeva, L. A., Limborska, S. A., and Dergunova, L. V. (2022) Insight into glyproline peptides’ activity through the modulation of the inflammatory and neurosignaling genetic response following cerebral ischemia-reperfusion, Genes (Basel), 13, 2380, https://doi.org/10.3390/genes13122380.
- Dergunova, L. V., Filippenkov, I. B., Limborska, S. A., and Myasoedov, N. F. (2023) Neuroprotective peptides and new strategies for ischemic stroke drug discoveries, Genes (Basel), 14, 953, https://doi.org/10.3390/genes14050953.
- Mannes, M., Martin, C., Menet, C., and Ballet, S. (2022) Wandering beyond small molecules: peptides as allosteric protein modulators, Trends Pharmacol. Sci., 43, 406-423, https://doi.org/10.1016/j.tips.2021.10.011.
Supplementary files
