Changes of transcriptomic activity in rat brain cells under the influence of synthetic adrenocorticotropic hormone-like peptides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Synthetic peptides have a wide range of clinical effects. Of particular interest are peptides based on adrenocorticotropic hormone (ACTH) both as already used and as potential drugs for preventing the consequences of cerebral ischemia. However, it is necessary to study the peptide influence on brain cells under normal physiological conditions, including understanding the risks of their use. Here, we used high-throughput RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in the frontal cortex of rats receiving intraperitoneal administration of ACTH-like peptides ACTH(4-7)PGP (Semax) and ACTH(6–9)PGP or saline. We identified 258 and 228 DEGs, respectively, with a threshold of > 1.5 and Padj < 0.05 at 22.5 hours after the first administration of Semax and ACTH(6-9)PGP. Metabolic pathways, characterizing both the general and specific effects of peptides on the transcriptome were identified. Both peptides predominantly caused a decrease in the expression of genes associated with the immune system. At the same time, when comparing the effects of ACTH(6-9)PGP relative to Semax, DEGs were identified that characterized the main differences in the effects of the peptides. These genes were mostly downregulated and associated with neurosignaling systems and regulation of ion channels and characterized differences in the effects of peptides. Our data show how differences in the structure of ACTH derivatives are associated with changes in the brain cell transcriptome following exposure to these related peptides. Furthermore, our results evident that when studying the influence of regulatory peptides on the transcriptome in pathological conditions, it is necessary to take into account their actions under normal physiological conditions.

Full Text

Restricted Access

About the authors

I. B. Filippenkov

National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow

N. Y. Glazova

National Research Centre “Kurchatov Institute”; Lomonosov Moscow State University

Email: filippenkov-ib.img@yandex.ru

Faculty of Biology

Russian Federation, 123182 Moscow; 119991 Moscow

E. A. Sebentsova

National Research Centre “Kurchatov Institute”; Lomonosov Moscow State University

Email: filippenkov-ib.img@yandex.ru

Faculty of Biology

Russian Federation, 123182 Moscow; 119991 Moscow

V. V. Stavchansky

National Research Centre “Kurchatov Institute”

Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow

L. A. Andreeva

National Research Centre “Kurchatov Institute”

Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow

N. F. Myasoedov

National Research Centre “Kurchatov Institute”

Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow

N. G. Levitskaya

National Research Centre “Kurchatov Institute”; Lomonosov Moscow State University

Email: filippenkov-ib.img@yandex.ru

Faculty of Biology

Russian Federation, 123182 Moscow; 119991 Moscow

S. A. Limborska

National Research Centre “Kurchatov Institute”

Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow

L. V. Dergunova

National Research Centre “Kurchatov Institute”

Email: filippenkov-ib.img@yandex.ru
Russian Federation, 123182 Moscow

References

  1. Lee, A. C. L., Harris, J. L., Khanna, K. K., and Hong, J. H. (2019) A comprehensive review on current advances in peptide drug development and design, Int. J. Mol. Sci., 20, 2383, https://doi.org/10.3390/ijms20102383.
  2. Apostolopoulos, V., Bojarska, J., Chai, T. T., Elnagdy, S., Kaczmarek, K., Matsoukas, J., New, R., Parang, K., Lopez, O. P., Parhiz, H., Perera, C. O., Pickholz, M., Remko, M., Saviano, M., Skwarczynski, M., Tang, Y., Wolf, W. M., Yoshiya, T., Zabrocki, J., Zielenkiewicz, P., AlKhazindar, M., Barriga, V., Kelaidonis, K., Sarasia, E. M., and Toth, I. (2021) A global review on short peptides: frontiers and perspectives, Molecules., 26, 430, https://doi.org/10.3390/molecules26020430.
  3. Lubell, W. D. (2022) Peptide-based drug development, Biomedicines, 10, 2037, https://doi.org/10.3390/biomedicines10082037.
  4. Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., and Fu, C. (2022) Therapeutic peptides: current applications and future directions, Signal. Transduct. Target. Ther., 7, 48, https://doi.org/10.1038/s41392-022-00904-4.
  5. Deigin, V. I., Poluektova, E. A., Beniashvili, A. G., Kozin, S. A., and Poluektov, Y. M. (2022) Development of peptide biopharmaceuticals in Russia, Pharmaceutics, 14, 716, https://doi.org/10.3390/pharmaceutics14040716.
  6. Starowicz, K., and Przewłocka, B. (2003) The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception, Life Sci., 73, 823-847, https://doi.org/10.1016/S0024-3205(03)00349-7.
  7. Adan, R. A. H., and Gispen, W. H. (1997) Brain melanocortin receptors: from cloning to function, Peptides, 18, 1279-1287, https://doi.org/10.1016/S0196-9781(97)00078-8.
  8. Catania, A., Gatti, S., Colombo, G., and Lipton, J. M. (2004) Targeting melanocortin receptors as a novel strategy to control inflammation, Pharmacol. Rev., 56, 1-29, https://doi.org/10.1124/pr.56.1.1.
  9. Cone, R. D. (2005) Anatomy and regulation of the central melanocortin system, Nat. Neurosci., 8, 571-578, https://doi.org/10.1038/nn1455.
  10. Giuliani, D., Minutoli, L., Ottani, A., Spaccapelo, L., Bitto, A., Galantucci, M., Altavilla, D., Squadrito, F., and Guarini, S. (2012) Melanocortins as potential therapeutic agents in severe hypoxic conditions, Front. Neuroendocrinol., 33, 179-193, https://doi.org/10.1016/j.yfrne.2012.04.001.
  11. Wikberg, J. (2001) Melanocortin receptors: new opportunities in drug discovery, Exp. Opin. Ther. Patents, 11, 61, https://doi.org/10.1517/13543776.11.1.61.
  12. Гусев Е. И., Мартынов М. Ю., Костенко Е. В., Петрова Л. В., Бобырёва С. Н. (2018) Эффективность семакса при лечении больных на разных стадиях ишемического инсульта, Журн. Неврол. Психиатр., 3, 61-68.
  13. Potaman, V. N., Alfeeva, L. Y., Kamensky, A. A., Levitzkaya, N. G., and Nezavibatko, V. N. (1991) N-terminal degradation of ACTH(4-10) and its synthetic analog semax by the rat blood enzymes, Biochem. Biophys. Res. Commun., 176, 741-746, https://doi.org/10.1016/S0006-291X(05)80247-5.
  14. Agapova, T. Y., Agniullin, Y. V., Shadrina, M. I., Shram, S. I., Slominsky, P. A., Lymborska, S. A., and Myasoedov, N. F. (2007) Neurotrophin gene expression in rat brain under the action of Semax, an analogue of ACTH 4-10, Neurosci. Lett., 417, 201-205, https://doi.org/10.1016/j.neulet.2007.02.042.
  15. Полунин Г. С., Нуриева С. М., Баяндин Д. Л., Шеремет Н. Л., Андреева Л. А. (2000) Определение терапевтической эффективности нового отечественного препарата «семакс» при заболеваниях зрительного нерва, Вестник Офтальмол., 116, 15-18.
  16. Filippenkov, I. B., Stavchansky, V. V., Glazova, N. Y., Sebentsova, E. A., Remizova, J. A., Valieva, L. V., Levitskaya, N. G., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2021) Antistress action of melanocortin derivatives associated with correction of gene expression patterns in the hippocampus of male rats following acute stress, Int. J. Mol. Sci., 22, 34576218, https://doi.org/10.3390/ijms221810054.
  17. Vorvul, A. O., Bobyntsev, I. I., Medvedeva, O. A., Mukhina, A. Y., Svishcheva, M. V., Azarova, I. E., Andreeva, L. A., and Myasoedov, N. F. (2022) ACTH(6-9)-Pro-Gly-Pro ameliorates anxiety-like and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress, Neuropeptides, 93, 35487169, https://doi.org/10.1016/j.npep.2022.102247.
  18. Бакаева З. В., Сурин А. М., Лизунова Н. В., Згодова А. Е., Красильникова И. А., Фисенко А. П., Фролов Д. А., Андреева Л. А., Мясоедов Н. Ф., Пинелис В. Г. (2020) Нейропротекторный потенциал пептидов HFRWPGP (ACTH6-9PGP), KKRRPGP, PYRRP в культивируемых корковых нейронах при глутаматной эксайтотоксичности, Докл. Росс. Акад. Наук Науки о Жизни, 491, 62-66, https://doi.org/10.31857/S2686738920020067.
  19. Akimov, M. G., Fomina-Ageeva, E. V., Dudina, P. V., Andreeva, L. A., Myasoyedov, N. F., and Bezuglov, V. V. (2021) ACTH(6–9)PGP peptide protects SH-SY5Y cells from H2O2, tert-butyl hydroperoxide, and cyanide cytotoxicity via stimulation of proliferation and induction of prosurvival-related genes, Molecules, 26, 1878, https://doi.org/10.3390/molecules26071878.
  20. Wang, C.-M., Pan, Y.-Y., Liu, M.-H., Cheng, B.-H., Bai, B., and Chen, J. (2017) RNA-seq expression profiling of rat MCAO model following reperfusion Orexin-A, Oncotarget, 8, 113066-113081, https://doi.org/10.18632/oncotarget.22995.
  21. Tian, R., Deng, A., Pang, X., Chen, Y., Gao, Y., Liu, H., and Hu, Z. (2022) VR-10 polypeptide interacts with CD36 to induce cell apoptosis and autophagy in choroid-retinal endothelial cells: identification of VR-10 as putative novel therapeutic agent for choroid neovascularization (CNV) treatment, Peptides, 157, 170868, https://doi.org/10.1016/ j.peptides.2022.170868.
  22. Zhang, Q., Liu, C., Shi, R., Zhou, S., Shan, H., Deng, L., Chen, T., Guo, Y., Zhang, Z., Yang, G. Y., Wang, Y., and Tang, Y. (2022) Blocking C3d+/GFAP+ A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke, Aging Dis., 13, 943-959, https://doi.org/10.14336/AD.2021.1029.
  23. Filippenkov, I. B., Stavchansky, V. V., Denisova, A. E., Yuzhakov, V. V., Sevan’kaeva, L. E., Sudarkina, O. Y., Dmitrieva, V. G., Gubsky, L. V., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2022) Novel insights into the protective properties of ACTH(4–7)PGP (Semax) peptide at the transcriptome level following cerebral ischaemia-reperfusion in rats, Genes (Basel), 11, 681, https://doi.org/10.3390/genes11060681.
  24. Medvedeva, E. V., Dmitrieva, V. G., Povarova, O. V., Limborska, S. A., Skvortsova, V. I., Myasoedov, N. F., and Dergunova, L. V. (2014) The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis, BMC Genomics, 15, 228, https://doi.org/10.1186/1471-2164-15-228.
  25. Medvedeva, E. V., Dmitrieva, V. G., Limborska, S. A., Myasoedov, N. F., and Dergunova, L. V. (2017) Semax, an analog of ACTH(4–7), regulates expression of immune response genes during ischemic brain injury in rats, Mol. Genet. Genomics, 292, 635-653, https://doi.org/10.1007/s00438-017-1297-1.
  26. Filippenkov, I. B., Remizova, J. A., Stavchansky, V. V., Denisova, A. E., Gubsky, L. V., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2023) Synthetic adrenocorticotropic peptides modulate the expression pattern of immune genes in rat brain following the early post-stroke period, Genes (Basel), 14, 1382, https://doi.org/10.3390/genes14071382.
  27. Ashmarin, I., Nezavibatko, V., Levitskaya, N., Koshelev, V., and Kamensky, A. (1995) Design and investigation of an ACTH(4-10) analog lacking D-amino acids and hydrophobic radicals, Neurosci. Res. Commun., 16, 105-112.
  28. Miasoedova, N. F., Skvortsova, V. I., Nasonov, E. L., Zhuravleva, E. I., Grivennikov, I. A., Arsen’eva, E. L., and Sukhanov, I. I. (1999) Investigation of mechanisms of neuro-protective effect of semax in acute period of ischemic stroke [in Russian], Zhurn. Nevrol. Psikhiatr. Im. S. S. Korsakova, 99, 15-19.
  29. Медведева Е. В., Дмитриева В. Г., Поварова О. В., Лимборская С. А., Скворцова В. И., Мясоедов Н. Ф., Дергунова Л. В. (2014) Трипептид PRO-GLY-PRO влияет на транскриптом коры головного мозга крыс в условиях фокальной ишемии, Мол. Биол., 48, 277, https://doi.org/10.7868/S0026898414020128.
  30. Шубина Т. А., Григорьева М. Е., Ляпина Л. А., Оберган Т. Ю., Мясоедов Н. Ф., Андреева Л. А. (2014) Гипогликемическая и противосвертывающая активность тетрапептида PRO-GLY-PRO-LEU при гиперхолестеринемии, Бюлл. Эксп. Биол. Мед., 158, 35-39.
  31. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 55, 611-622, https://doi.org/10.1373/clinchem.2008.112797.
  32. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44-57, https://doi.org/10.1038/nprot.2008.211.
  33. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, 102, 15545-15550, https://doi.org/10.1073/pnas.0506580102.
  34. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., and Wishart, D. S. (2016) Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res., 44, W147-W153, https://doi.org/10.1093/nar/gkw419.
  35. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software Environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498-2504, https://doi.org/10.1101/gr.1239303.
  36. Pintér, E., Pozsgai, G., Hajna, Z., Helyes, Z., and Szolcsányi, J. (2014) Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions, Br. J. Clin. Pharmacol., 77, 5-20, https://doi.org/10.1111/bcp.12097.
  37. Дергунова Л. В., Дмитриева В. Г., Филиппенков И. Б., Ставчанский В. В., Денисова А. Е., Южаков В. В., Севанькаева Л. Е., Валиева Л. В., Сударкина О. Ю., Губский Л. В., Мясоедов Н. Ф., Лимборская С. А. (2021) Пептидный препарат AKTГ(4-7)PGP (семакс) подавляет транскрипцию генов провоспалительных медиаторов, индуцированную обратимой ишемией мозга крыс, Мол. Биол., 55, 402-411, https://doi.org/10.31857/S0026898421010043.
  38. Bhaumik, S., and Basu, R. (2017) Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response, Front. Immunol., 8, 254, https://doi.org/10.3389/fimmu.2017.00254.
  39. Zhou, L., Chong, M. M. W., and Littman, D. R. (2009) Plasticity of CD4+ T cell lineage differentiation, Immunity, 30, 646-655, https://doi.org/10.1016/j.immuni.2009.05.001.
  40. Lee, I. F., Wang, X., Hao, J., Akhoundsadegh, N., Chen, L., Liu, L., Langermann, S., Ou, D., and Warnock, G. L. (2013) B7-H4.Ig inhibits the development of Type 1 diabetes by regulating Th17 cells in NOD mice, Cell. Immunol., 282, 1-8, https://doi.org/10.1016/j.cellimm.2013.03.005.
  41. Zou, Y., Zhang, J., Sun, F., Xu, Q., Chen, L., Luo, X., Wang, T., Zhou, Q., Zhang, S., Xiong, F., Kong, W., Yang, P., Yu, Q., Liu, S., and Wang, C. Y. (2024) Fluvoxamine inhibits Th1 and Th17 polarization and function by repressing glycolysis to attenuate autoimmune progression in type 1 diabetes, Mol. Med., 30, 23, https://doi.org/10.1186/s10020-024-00791-1.
  42. Balakrishnan, K., Hleihil, M., Bhat, M.A., Ganley, R. P., Vaas, M., Klohs, J., Zeilhofer, H. U., and Benke, D. (2022) Targeting the interaction of GABAB receptors with CaMKII with an interfering peptide restores receptor expression after cerebral ischemia and inhibits progressive neuronal death in mouse brain cells and slices, Brain Pathol., 33, e13099, https://doi.org/10.1111/bpa.13099.
  43. Hleihil, M., Balakrishnan, K., and Benke, D. (2022) Protein phosphatase 2A regulation of GABA B receptors normalizes ischemia-induced aberrant receptor trafficking and provides neuroprotection, Front. Mol. Neurosci., 15, 1015906, https://doi.org/10.3389/fnmol.2022.1015906.
  44. Chen, M., Zhang, X., Fan, J., Sun, H., Yao, Q., Shi, J., Qu, H., Du, S., Cheng, Y., Ma, S., Zhang, M., and Zhan, S. (2021) Dynorphin A (1-8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels, Neuropeptides, 89, 34298371, https://doi.org/10.1016/j.npep.2021.102182.
  45. Paul, S., and Candelario-Jalil, E. (2021) Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies, Exp. Neurol., 335, 113518, https://doi.org/10.1016/ j.expneurol.2020.113518.
  46. Ballarin, B., and Tymianski, M. (2018) Discovery and development of NA-1 for the treatment of acute ischemic stroke, Acta. Pharmacol. Sin., 39, 661-668, https://doi.org/10.1038/aps.2018.5.
  47. Malyshev, A. V., Sukhanova, I. A., Ushakova, V. M., Zorkina, Y. A., Abramova, O. V., Morozova, A. Y., Zubkov, E. A., Mitkin, N. A., Pavshintsev, V. V., Doronin, I. I., Gedzun, V. R., Babkin, G. A., Sanchez, S. A., Baker, M. D., and Haile, C. N. (2022) Peptide LCGA-17 attenuates behavioral and neurochemical deficits in rodent models of PTSD and depression, Pharmaceuticals (Basel), 15, 462, https://doi.org/10.3390/ph15040462.
  48. Shibato, J., Takenoya, F., Yamashita, M., Gupta, R., Min, C. W., Kim, S. T., Kimura, A., Takasaki, I., Hori, M., Shioda, S., and Rakwal, R. (2023) OMICS analyses unraveling related gene and protein-driven molecular mechanisms underlying PACAP 38-induced neurite outgrowth in PC12 cells, Int. J. Mol. Sci., 24, 4169, https://doi.org/10.3390/ijms24044169.
  49. Stavchansky, V. V., Filippenkov, I. B., Remizova, J. A., Denisova, A. E., Mozgovoy, I. V., Gubsky, L. V., Myasoedov, N. F., Andreeva, L. A., Limborska, S. A., and Dergunova, L. V. (2022) Insight into glyproline peptides’ activity through the modulation of the inflammatory and neurosignaling genetic response following cerebral ischemia-reperfusion, Genes (Basel), 13, 2380, https://doi.org/10.3390/genes13122380.
  50. Dergunova, L. V., Filippenkov, I. B., Limborska, S. A., and Myasoedov, N. F. (2023) Neuroprotective peptides and new strategies for ischemic stroke drug discoveries, Genes (Basel), 14, 953, https://doi.org/10.3390/genes14050953.
  51. Mannes, M., Martin, C., Menet, C., and Ballet, S. (2022) Wandering beyond small molecules: peptides as allosteric protein modulators, Trends Pharmacol. Sci., 43, 406-423, https://doi.org/10.1016/j.tips.2021.10.011.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of peptides ACTH(4-7)PGP (semax) and ACTH(6-9)PGP (a). Schematic representation of a section of the rat brain with shading indicating the localization of the area of the frontal cortex taken for RNA sequencing (b). Study scheme (c)

Download (276KB)
3. 2. RNA-Seq analysis of the effect of semax and ACTH(6-9)PGP on the transcriptome of the rat frontal cortex. The volcano-plot graphs illustrate the differences in mRNA expression between the norm + semax (NS) and norm + saline (NV) groups (a), as well as norm + ACTH(6-9)PGP (NA) and norm + saline (NV) (b). 10 DEGS were presented, which showed the largest multiple change in expression in the comparisons NS vs. NV (b) and NA vs. NV (d). Each comparison group included 3 animals. The data is presented as the average ± standard error of the average

Download (391KB)
4. 3. Comparison of the results of RNA-Seq in experiments with the introduction of semax and ACTH(6-9)PGP. Venn diagrams (a–b) illustrate the results obtained for two pairwise comparisons "norm + semax" (NS) vs. "norm + saline solution" (NV) and "norm + ACTH(6-9)PGP" (NA) vs. "norm + saline solution" (NV): for all DEG (a), only for those with increased expression (b) and only for those with decreased expression (c). The numbers at the intersection of different sets of genes in the Venn diagram indicate the number of DEG (multiplicity > 1.5; Padj < 0.05) according to RNA-Seq data. The relative expression values for 10 genes from each segment are shown in the Venn diagram (panel a): genes with the largest multiple expression variation in NS vs. NV and lie within the intersection of the sets of DEG (d); DEG with the largest multiple expression change in NS vs. NV, but not DEG in NA vs. NV (e); DEG with the largest multiple expression change in NA vs. NV, but not DEG in NS vs. NV (e). The data is presented as the mean ± the standard error of the mean

Download (416KB)
5. Fig. 4. Comparison of the results of RNA-Seq in experiments with ACTH(6-9)PGP administration relative to the action of semax. The "volcano-plot" graph illustrates the differences in mRNA expression between the "norm + ACTH(6-9)PGP" (NA) and "norm + semax" (NS) (a) groups. 10 genes are presented that showed the greatest multiple change in expression compared to NA vs. NS (multiplicity > 1.5; Padj < 0.05) according to RNA-Seq data (b)

Download (191KB)
6. Fig. 5. Signaling pathways associated with the effect of semax and ACTH(6-9)PGP on the transcriptome of a region of the frontal cortex of rats. The analysis was performed using the DAVID v2021 program. Schematic comparison of annotations (paths) related to DEG obtained in three paired comparisons NS vs. NV, NA vs. NV and NA vs. NS in the form of a Venn diagram (a). The number of annotations is indicated by numbers in the diagram segments. The signal pathways lying in the segments on the Venn diagram are shown: common for NS vs comparisons. NV and NA vs. NV (b), as well as comparisons specific to NS vs. NV (c), NA vs. NV (d), and NA vs. NS (e). Panels (b), (c), and (e) show all paths lying in the corresponding segment on the Venn diagram, and panel (d) shows only 5 of the 22 paths with the minimum Padj value (the p value adjusted using the Benjamini–Hochberg procedure) in NA vs. NV. Padj values are presented for each pathway, as well as the number of increased and decreased gene expression in the corresponding pairwise comparison. Only DEG and pathways with Padj < 0.05 were selected for analysis. Each comparison group included 3 animals. Inflammatory bowel disease – inflammatory bowel disease; NOD-like receptor signaling pathway – NOD-like receptor signaling pathway; Tuberculosis – tuberculosis; Coronavirus disease – COVID-19 (coronavirus disease); Influenza A – influenza A; Systemic lupus erythematosus – systemic lupus erythematosus; Antigen processing and presentation – antigen processing and presentation; Phagosome – phagosome; Pertussis – whooping cough; Leishmaniasis – leishmaniasis; Complement and coagulation cascades – cascades of complement and coagulation; Epstein-Barr virus infection – Epstein–Barr virus infection; Immune System – immune system; Staphylococcus aureus infection – staphylococcus aureus infection; Innate Immune System – innate immune system); Th17 cell differentiation – differentiation of T helper cells 17; Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell - immunoregulatory interactions between lymphoid and non–lymphoid cells; Neutrophil degradation – degranulation neutrophils; Viral myocarditis – viral myocarditis; Herpes simplex virus 1 infection – infection of the herpes simplex virus 1; Natural killer cell mediated cytotoxicity – cytotoxicity mediated by natural killer cells; Neuronal System – neural system

Download (576KB)
7. 6. Networks reflecting the general and specific effects of semax and ACTH(6-9)PGP on the transcriptome of the rat frontal cortex. Only the genes that changed expression under the action of both semax and ACTH(6-9)PGP (NS vs. NV and NA vs. NV) (a); only under the action of semax (NS vs. NV), but not ACTH(6-9)PGP (NA vs. NV) (b); only under the action of ACTH(6-9)PGP (NA vs. NV), but not semax (NS vs. NV) (b); under the action of ACTH(6-9)PGP relative to semax (NA vs. NS) (d). These groups of genes (a–g) are involved in the presentation of KP1–KP4, respectively. In the diagrams, the genes are presented in rectangular blocks colored according to the differential expression of the genes in the comparison groups – NS vs. NV (a and b), NA vs. NV (c), NA vs. NS (d). The paths are indicated by white ovals. The lines connecting genes and pathways indicate the involvement of the protein products of the genes in the functioning of the pathway. The DAVID v2021 program was used to annotate DEG functions in terms of paths from the KEGG and REACTOME databases. The network was built using Cytoscape 3.9.2

Download (371KB)
8. Suppl. 1.
Download (466KB)
9. Suppl. 2.
Download (67KB)

Copyright (c) 2024 Russian Academy of Sciences