Femtosecond Dynamics of an Excited Primary Electron Donor in Reaction Centers of the Purple Bacterium Rhodobacter sphaeroides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Femtosecond transient absorption spectroscopy spectroscopy was used to study the dynamics of the excited primary electron donor in the reaction centers of the purple bacterium Rhodobacter sphaeroides. Using global analysis and the interval method, a correlation was found between the vibrational coherence damping of the excited primary electron donor and the lifetime of the charge-separated state P+BA–, indicating the reversibility of electron transfer to the primary electron acceptor, the BA molecule. In the reaction centers, signs of superposition of two electronic states of P were found for a delay time of less than 200 fs. It is suggested that the admixture value of charge transfer state PA+PB– with the excited primary electron donor P* is about 24%. The results obtained are discussed in terms of the two-step electron transfer mechanism.

Full Text

Restricted Access

About the authors

A. M. Khristin

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: rgreen1@rambler.ru
Russian Federation, Pushchino

T. Yu. Fufina

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: rgreen1@rambler.ru
Russian Federation, Pushchino

R. A. Khatypov

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Author for correspondence.
Email: rgreen1@rambler.ru
Russian Federation, Pushchino

References

  1. Kennis, J. T., Shkuropatov, A. Y., van Stokkum, I. H. M., Gast, P., Hoff, A. J., Shuvalov, V. A., and Aartsma, T. J. (1997) Formation of a long-lived P+BA– state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at Low temperature, Biochemistry, 36, 16231-16238, https://doi.org/10.1021/bi9712605.
  2. Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2000) Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers, FEBS Lett., 466, 209-212, https://doi.org/10.1016/S0014-5793(00)01081-4.
  3. Dominguez, P., Himmelstoss, M., Michelmann, J., Lehner, F., Gardiner, A. T, Cogdell, R. J., and Zinth, W. (2014) Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides – time constants of the initial electron transfer, Chem. Phys. Lett., 601, 103-109, https://doi.org/10.1016/j.cplett.2014.03.085.
  4. Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2002) Nuclear wavepacket motion between P* and P+BA– potential surfaces with subsequent electron transfer to HA in bacterial reaction centers. 1. Room temperature, Biochemistry, 41, 2667-2674, https://doi.org/10.1021/bi0101244.
  5. Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. (1993) The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis, Proc. Natl. Acad. Sci. USA, 90, 11757-11761, https://doi.org/10.1073/pnas.90.24.11757.
  6. Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U., and Zinth, W. (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center, Chem. Phys. Lett., 160, 1-7, https://doi.org/10.1016/0009-2614(89)87543-8.
  7. Weaver, J. B., Lin, C.-Y., Faries, K. M., Mathews, I. I., Russi, S., Holten, D., Kirmaier, C., and Boxer, S. G. (2021) Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism, Proc. Natl. Acad. Sci. USA, 118, e2116439118, https://doi.org/10.1073/pnas. 2116439118.
  8. Hamm, P., and Zinth, W. (1995) Ultrafast initial reaction in bacterial photosynthesis revealed by femtosecond infrared spectroscopy, J. Phys. Chem., 99, 13537-13544, https://doi.org/10.1021/j100036a034.
  9. Khatypov, R. A., Khmelnitskiy, A. Y., Khristin, A. M., Fufina, T. Y., Vasilieva, L. G., and Shuvalov, V. A. (2012) Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain, Biochim. Biophys. Acta, 1817, 1392-1398, https://doi.org/10.1016/j.bbabio.2011.12.007.
  10. Ivashin, N. V., and Shchupak, E. E. (2016) The nature of the lower excited state of the special pair of bacterial photosynthetic reaction center of Rhodobacter sphaeroides and the dynamics of primary charge separation, Optics Spectrosc., 121, 181-189, https://doi.org/10.1134/S0030400X16080087.
  11. Parson, W. W. (2020) Dynamics of the excited state in photosynthetic bacterial reaction centers, J. Phys. Chem. B, 124, 1733-1739, https://doi.org/10.1021/acs.jpcb.0c00497.
  12. Yakovlev, A. G., and Shuvalov, V. A. (2020) Coherent intradimer dynamics in reaction centers of photosynthetic green bacterium Chloroflexus aurantiacus, Sci. Rep., 10, 228, https://doi.org/10.1038/s41598-019-57115-1.
  13. Ma, F., Romero, E., Jones, M. R. Novoderezhkin, V. I., and van Grondelle, R. (2018) Vibronic coherence in the charge separation process of the Rhodobacter sphaeroides reaction center, J. Phys. Chem. Lett., 9, 1827-1832, https://doi.org/10.1021/acs.jpclett.8b00108.
  14. Ma, F., Romero, E., Jones, M. R., Novoderezhkin, V. I., and van Grondelle, R. (2019) Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center, Nat. Commun., 10, 933, https://doi.org/10.1038/s41467-019-08751-8.
  15. Ma, F., Romero, E., Jones, M. R., Novoderezhkin, V. I., Yu, L.-J., and van Grondelle, R. (2021) Dynamic Stark effect in two-dimensional spectroscopy revealing modulation of ultrafast charge separation in bacterial reaction centers by an inherent electric field, J. Phys. Chem. Lett., 12, 5526-5533, https://doi.org/10.1021/acs. jpclett.1c01059.
  16. Ma, F., Romero, E., Jones M. R., Novoderezhkin, V. I., Yu, L.-J., and van Grondelle, R. (2022) Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis, Photosynth. Res., 151, 225-234, https://doi.org/10.1007/s11120-021-00881-9.
  17. Lockhart, D. J., and Boxer, S. G. (1988) Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers, Proc. Natl. Acad. Sci. USA, 85, 107-111, https://doi.org/10.1073/pnas.85.1.107.
  18. Moore, L. J., Zhou, H., and Boxer, S. G. (1999) Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy, Biochemistry, 38, 11949-11960, https://doi.org/10.1021/bi990892j.
  19. Yakovlev, A. G., and Shuvalov, V. A. (2014) Spectral exhibition of electron-vibrational relaxation in P* state of Rhodobacter sphaeroides reaction centers, Photosynth. Res., 125, 9-22, https://doi.org/10.1007/s11120-014-0041-5.
  20. Yakovlev, A. G., and Shuvalov, V. A. (2015) Electronic relaxation in P* state of Rhodobacter sphaeroides reaction centers, Dokl. Biochem. Biophys., 461, 72-75, https://doi.org/10.1134/S1607672915020039.
  21. Яковлев А. Г., Шувалов В. А. (2017) Фемтосекундные релаксационные процессы в реакционных центрах Rhodobacter sphaeroides, Биохимия, 82, 906-915, https://doi.org/10.1134/S0006297917080053.
  22. Parson, W. W., and Warshel, A. (1987) Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis, J. Am. Chem. Soc., 109, 6152-6163, https://doi.org/10.1021/ja00254a040.
  23. Lathrop, E. J. P., and Friesner, R. A. (1994) Simulation of optical spectra from the reaction center of Rhodobacter Sphaeroides. Effects of an internal charge-separated state of the special pair, J. Phys. Chem., 98, 3056-3066, https://doi.org/10.1021/j100062a051.
  24. Scherer, P. O. J., and Fischer, S. F. (1989) Quantum treatment of the optical spectra and the initial electron transfer process within the reaction center of Rhodopseudomonas viridis, Chem. Phys., 131, 115-127, https://doi.org/10.1016/0301-0104(89)87084-3.
  25. Vos, M. H., Jones, M. R., Hunter, C. N., Breton, J., and Martin, J.-L. (1994) Coherent nuclear dynamics at room temperature in bacterial reaction centers, Proc. Natl. Acad. Sci. USA, 91, 12701-12705, https://doi.org/10.1073/pnas.91.26.12701.
  26. Vos, M. H., Lambry, J.-C., Robles, S. J., Youvan, D. C., Breton, J., and Martin, J.-L. (1992) Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K, Proc. Natl. Acad. Sci. USA, 89, 613-617, https://doi.org/10.1073/pnas.89.2.613.
  27. Vos, M. H., Jones, M. R., and Martin, J.-L. (1998) Vibrational coherence in bacterial reaction centers: spectroscopic characterization of motions active during primary electron transfer, Chem. Phys., 233, 179-190, https://doi.org/10.1016/S0301-0104(97)00355-8.
  28. Novoderezhkin, V. I., Yakovlev, A. G., van Grondelle, R., and Shuvalov, V. A. (2004) Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: a Redfield theory approach, J. Phys. Chem. B, 108, 7445-7457, https://doi.org/10.1021/jp0373346.
  29. Eisenmayer, T. J., de Groot, H. J. M., van de Wetering, E., Neugebauer, J., and Buda, F. (2012) Mechanism and reaction coordinate of directional charge separation in bacterial reaction centers, J. Phys. Chem. Lett., 3, 694-697, https://doi.org/10.1021/jz201695p.
  30. Eisenmayer, T. J., Lasave, J. A., Monti, A., de Groot, H. J. M, Buda, F. (2012) Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center, J. Phys. Chem. B, 117, 38, 11162-11168, https://doi.org/10.1021/jp401195t.
  31. Milanovsky, G. E., Shuvalov, V. A., Semenov, A. Y., and Cherepanov, D. A. (2015) Elastic vibrations in the photosynthetic bacterial reaction center coupled to the primary charge separation: implications from molecular dynamics simulations and stochastic Langevin approach, J. Phys. Chem. B, 119, 13656-13667, https://doi.org/10.1021/acs.jpcb.5b03036.
  32. Renger, T. (2004) Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature dependent optical band shift, Phys. Rev. Lett., 93, 188101, https://doi.org/10.1103/PhysRevLett.93.188101.
  33. Khmelnitskiy, A., Reinot, T., and Jankowiak, R. (2019) Mixed upper exciton state of the special pair in bacterial reaction centers, J. Phys. Chem. B, 123, 852-859, https://doi.org/10.1021/acs.jpcb.8b12542.
  34. Breton, J. (1985) Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography, Biochim. Biophys. Acta, 810, 235-245, https://doi.org/10.1016/0005-2728(85)90138-0.
  35. Reddy, J. R. S., Kolaczkowski, S. V., and Small, G. J. (1993) Nonphotochemical hole burning of the reaction center of Rhodopseudomonas viridis, J. Phys. Chem., 97, 6934-6940, https://doi.org/10.1021/j100128a031.
  36. Vos, M. H., Breton, J., and Martin, J.-L. (1997) Electronic energy transfer within the hexamer cofactor system of bacterial reaction centers, J. Phys. Chem. B, 101, 9820-9832, https://doi.org/10.1021/jp971486h.
  37. Niedringhaus, A., Policht, V. R., Sechrist, R., Konar, A., Laible, P. D., Bocian, D. F., Holten, D., Kirmaier, C., and Ogilvie, J. P. (2018) Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy, Proc. Natl. Acad. Sci. USA, 115, 3563-3568, https://doi.org/10.1073/pnas.1721927115.
  38. Woodbury, N. W., Lin, S., Lin, X., Peloquin, J. M., Taguchi, A. K. W., Williams, J. C., and Allen, J. P. (1995) The role of reaction center excited state evolution during charge separation in a Rb. sphaeroides mutant with an initial electron donor midpoint potential 260 mV above wild type, Chem. Phys., 197, 405-421, https://doi.org/10.1016/0301-0104(95)00170-S.
  39. Яковлев А. Г., Васильева Л. Г., Шкуропатов А. Я., Шувалов В. А. (2011) Когерентные эффекты при разделении зарядов в реакционных центрах мутантов LL131H и LL131H/LM160H/FM197H, Биохимия, 76, 1359-1373.
  40. Хмельницкий А. Ю., Хатыпов Р. А., Христин А. М., Леонова М. М., Васильева Л. Г., Шувалов В. А. (2013) Разделение зарядов в реакционных центрах Rhodobacter sphaeroides с повышенным потенциалом первичного донора электрона, Биохимия, 78, 82-91.
  41. Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Photoreactions of bacteriopheophytins and bacteriochlorophylls in reaction centers of Rhodopseudomonas sphaeroides and Chloroflexus aurantiacus, Biochim. Biophys. Acta, 849, 337-346, https://doi.org/10.1016/0005-2728(86)90145-3.
  42. Polli, D., Brida, D., Mukamel, S., Lanzani, G., and Cerullo G. (2010) Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses, Phys. Rev. A, 82, 053809, https://doi.org/10.1103/PhysRevA.82.053809.
  43. Van Stokkum, I. H. M., Larsen, D. S., and van Grondelle, R. (2004) Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 1657, 82-104, https://doi.org/10.1016/j.bbabio.2004.04.011.
  44. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M., and van Stokkum, I. H. M. (2012) Glotaran: a Java-based graphical user interface for the R package TIMP, J. Stat. Soft., 49, 1-22, https://doi.org/10.18637/jss.v049.i03.
  45. Хатыпов Р. А., Христин А. М., Васильева Л. Г., Шувалов В. А. (2019) Алгоритм извлечения кинетики слабых полос в дифференциальных спектрах поглощения реакционных центров Rhodobacter sphaeroides, Биохимия, 84, 827-835, https://doi.org/10.1134/S0320972519060083.
  46. Woodbury, N. W. T., and Parson, W. W. (1984) Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 767, 345-361, https://doi.org/10.1016/0005-2728(84)90205-6.
  47. Arnett, D. C., Moser, C. C., Dutton, P. L., and Scherer, N. F. (1999) The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides, J. Phys. Chem. B, 103, 2014-2032, https://doi.org/10.1021/jp984464j.
  48. Scherer, P. O. J., Scharnagl, C., and Sighart F. (1995) Symmetry breakage in the electronic structure of bacterial reaction centers, Chem. Phys., 197, 333-341, https://doi.org/10.1016/0301-0104(95)00149-I.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary
Download (699KB)
3. Fig. 1. Differential absorption spectra of RCs of Rba. Sphaeroides (a) at time delays of 40 fs (curve 1), 180 fs (curve 2), 300 fs (curve 3), 1.5 ps (curve 4) and 210 ps (curve 5) measured at 293 K. b - Double-differential absorption spectra obtained by subtracting spectra at time delays of 40 fs minus 210 ps (curve 1), 1.5 ps minus 210 ps (curve 2), 180 fs minus 1.5 ps (curve 3) and 300 fs minus 1.5 ps (curve 4); the dashed line shows the ∆A spectrum measured at a time delay of 210 ps

Download (162KB)
4. Fig. 2. Kinetic curves of absorbance changes at 870 nm (a), at 940 nm (b) and at 915 nm (c) in the RC of Rba. sphaeroides obtained by the interval method at 293 K. The contribution of stimulated emission is highlighted in grey in the figure. The solid line shows a single exponent approximation of the kinetics at 915 nm. The dotted line shows positive changes due to the contribution of the fading of the absorption band of the primary donor P. The inset shows the kinetic curve at 940 nm on a time scale of -0.5 to 10 ps

Download (202KB)
5. Fig. 3. Stimulated emission kinetics at 940 nm (open symbols) and absorption band kinetics of the anion radical BA- at 1025 nm (closed symbols) measured at 293 K (a) and at 100 K (b) in the RC of Rba. sphaeroides. The amplitude of the first peak of stimulated emission is normalised to the maximum rise of the absorption band at 1025 nm. The double-sided arrow shows the time delay at which the complete attenuation of emission coincides with the complete increase in absorption of BA-

Download (181KB)
6. Fig. 4. Exponential decay-associated difference spectra (decay-associated difference spectra, DADS) of RC absorption spectra of Rba. sphaeroides measured at physiological temperature (a) and at 100 K (b)

Download (149KB)
7. Fig. 5. Differential absorption spectra of wild-type RC Rba. sphaeroides at 60 fs (curve 1) and 170 fs (curve 2) time delays (a) and RC of the triple mutant at 80 fs (curve 1) and 380 fs (curve 2) time delays (b), measured at 100 K. The insets (panels a and b) show the region of the P* absorption band at 810 nm. The magnitude of the positive dispersion of the probing pulse in the wavelength range 810-940 nm is ~100 fs

Download (165KB)
8. Fig. 6. Twice differential absorption spectra of the RC mutant M160LH + L131LH + M197FH of Rba. sphaeroides obtained by subtracting the differential spectrum measured at a time delay of 220 fs from the differential spectra measured at time delays of 260 fs (curve 1), 300 fs (curve 2), and 340 fs (curve 3) at 100 K temperature. The arrow shows the wavelength of the maximum of the absorption band P

Download (80KB)
9. Fig. 7. Kinetic curves of the absorption band at 810 nm in the RCs of wild-type Rba. sphaeroides (curve 1) and the M160LH + L131LH + M197FH mutant (curve 2) at 100 K. The dotted line shows the amplitude of the absorption band at the interaction of the excitation and probing pulses, and the dashed line shows the increase of the absorption band in the RC of the mutant at time delays longer than the duration of the hardware function (double-sided arrow)

Download (79KB)

Copyright (c) 2024 Russian Academy of Sciences