Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of mTOR Protein Kinase – Assessment of the Prospects of Parkinson’s Disease Therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson’s disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due dose-dependent effect of mTOR kinase activity inhibition on cellular parameters, the alteration of which is associated with pathogenesis of the PD. The study was performed on peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have first showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, mutations in which are a high-risk factor for PD, and leads also to a decrease in pathological phosphorylated (Ser129) form of alpha-synuclein, an increase in its aggregation resistant tetrameric form in absence of the changes in lysosomal enzyme activities and lysosphingolipids concentrations. Inhibition of the protein kinase mTOR may be a promising approach for developing therapy for PD, in particular GBA1-associated PD.

Full Text

Restricted Access

About the authors

A. I. Bezrukova

Saint Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the Kurchatov Institute; Pavlov First Saint Petersburg State Medical University

Author for correspondence.
Email: bezrukova_ai@pnpi.nrcki.ru
Russian Federation, Gatchina; Saint Petersburg

K. S. Basharova

Saint Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the Kurchatov Institute

Email: bezrukova_ai@pnpi.nrcki.ru
Russian Federation, Gatchina

G. V. Baydakova

Bochkov Research Center for Medical Genetics

Email: bezrukova_ai@pnpi.nrcki.ru
Russian Federation, Moscow

E. Y. Zakharova

Bochkov Research Center for Medical Genetics

Email: bezrukova_ai@pnpi.nrcki.ru
Russian Federation, Moscow

S. N. Pchelina

Saint Petersburg Nuclear Physics Institute named by B.P. Konstantinov of the Kurchatov Institute; Pavlov First Saint Petersburg State Medical University

Email: bezrukova_ai@pnpi.nrcki.ru
Russian Federation, Gatchina; Saint Petersburg

T. S. Usenko

Saint Petersburg Nuclear Physics Institute named by B.P. Konstantinov of the Kurchatov Institute; Pavlov First Saint Petersburg State Medical University

Email: bezrukova_ai@pnpi.nrcki.ru
Russian Federation, Gatchina; Saint Petersburg

References

  1. Surmeier, D. J. (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease, FEBS J., 285, 3657-3668, https://doi.org/10.1111/febs.14607.
  2. Morris, H. R., Spillantini, M. G., Sue, C. M., and Williams-Gray, C. H. (2024) The pathogenesis of Parkinson’s disease, Lancet, 403, 293-304, https://doi.org/10.1016/S0140-6736(23)01478-2.
  3. Kouli, A, Torsney, K. M., and Kuan, W. L. (2018) Parkinson’s disease: etiology, neuropathology, and pathogenesis, in Parkinson’s Disease: Pathogenesis and Clinical Aspects (Stoker, T. B., and Greenland, J. C., eds) Brisbane (AU), Codon Publications, Chap. 1, https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1.
  4. Lynch-Day, M. A., Mao, K., Wang, K., Zhao, M., and Klionsky, D. J. (2012) The role of autophagy in Parkinson’s disease, Cold Spring Harb. Perspect. Med., 2, a009357, https://doi.org/10.1101/cshperspect.a009357.
  5. Hou, X., Watzlawik, J. O., Fiesel, F. C., and Springer, W. (2020) Autophagy in Parkinson’s disease, J. Mol. Biol., 432, 2651-2672, https://doi.org/10.1016/j.jmb.2020.01.037.
  6. Nechushtai, L., Frenkel, D., and Pinkas-Kramarski, R. (2023) Autophagy in Parkinson’s disease, Biomolecules, 13, 1435, https://doi.org/10.3390/biom13101435.
  7. Khan, M. R., Yin, X., Kang, S.-U., Mitra, J., Wang, H., Ryu, T., Brahmachari, S., Karuppagounder, S. S., Kimura, Y., Jhaldiyal, A., Kim, H. H., Gu, H., Chen, R., Redding-Ochoa, J., Troncoso, J., Na, C. H., Ha, T., Dawson, V. L., and Dawson, T. M. (2024) Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson’s disease, Sci. Transl. Med., 15, eadd0499, https://doi.org/10.1126/scitranslmed.add0499.
  8. Lan, A., Chen, J., Zhao, Y., Chai, Z., and Hu, Y. (2017) mTOR signaling in Parkinson’s disease, Neuromol. Med., 19, 1-10, https://doi.org/10.1007/s12017-016-8417-7.
  9. Usenko, T., Bezrukova, A., Rudenok, M. M., Basharova, K., Shadrina, M. I., Slominsky, P. A., Zakharova, E., and Pchelina, S. (2023) Whole transcriptome analysis of substantia nigra in mice with MPTP-induced parkinsonism bearing defective glucocerebrosidase activity, Int. J. Mol. Sci., 24, 12164, https://doi.org/10.3390/ijms241512164.
  10. Usenko, T., Bezrukova, A., Basharova, K., Panteleeva, A., Nikolaev, M., Kopytova, A., Miliukhina, I., Emelyanov, A., Zakharova, E., and Pchelina, S. (2021) Comparative transcriptome analysis in monocyte-derived macrophages of asymptomatic GBA mutation carriers and patients with GBA-associated Parkinson’s disease, Genes (Basel), 12, 1545, https://doi.org/10.3390/genes12101545.
  11. Bogetofte, H., Ryan, B. J., Jensen, P., Schmidt, S. I., Vergoossen, D. L. E., Barnkob, M. B., Kiani, L. N., Chughtai, U., Heon-Roberts, R., Caiazza, M. C., McGuinness, W., Márquez-Gómez, R., Vowles, J., Bunn, F. S., Brandes, J., Kilfeather, P., Connor, J. P., Fernandes, H. J. R., Caffrey, T. M., Meyer, M., Cowley, S. A., Larsen, M. R., and Wade-Martins, R. (2023) Post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson’s disease GBA-N370S dopamine neurons, Cell Rep., 42, 112180, https://doi.org/10.1016/j.celrep. 2023.112180.
  12. Mubariz, F., Saadin, A., Lingenfelter, N., Sarkar, C., Banerjee, A., Lipinski, M. M., and Awad, O. (2023) Deregulation of mTORC1–TFEB axis in human IPSC model of GBA1-associated Parkinson’s disease, Front. Neurosci., 17, 1152503, https://doi.org/10.3389/fnins.2023.1152503.
  13. Yu, L., Hu, X., Xu, R., Zhao, Y., Xiong, L., Ai, J., Wang, X., Chen, X., Ba, Y., Xing, Z., Guo, C., Mi, S., and Wu, X. (2024) Piperine promotes PI3K/AKT/mTOR-mediated gut-brain autophagy to degrade α-synuclein in Parkinson’s disease rats, J. Ethnopharmacol., 322, 117628, https://doi.org/10.1016/j.jep.2023.117628.
  14. Zhang, G., Yin, L., Luo, Z., Chen, X., He, Y., Yu, X., Wang, M., Tian, F., and Luo, H. (2021) Effects and potential mechanisms of rapamycin on MPTP-induced acute Parkinson’s disease in mice, Ann. Palliat. Med., 10, 2889-2897, https://doi.org/10.21037/apm-20-1096.
  15. Sidransky, E., and Lopez, G. (2012) The link between the GBA gene and parkinsonism, Lancet Neurol., 11, 986-998, https://doi.org/10.1016/S1474-4422(12)70190-4.
  16. Emelyanov, A. K., Usenko, T. S., Tesson, C., Senkevich, K. A., Nikolaev, M. A., Miliukhina, I. V., Kopytova, A. E., Timofeeva, A. A., Yakimovsky, A. F., Lesage, S., Brice, A., and Pchelina, S. N. (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set, Neurobiol. Aging, 71, 267.e7-267.e10, https://doi.org/10.1016/ j.neurobiolaging.2018.06.027.
  17. Xu, J., Ao, Y.-L., Huang, C., Song, X., Zhang, G., Cui, W., Wang, Y., Zhang, X. Q., and Zhang, Z. (2022) Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson’s models via regulating autophagy-lysosome pathway, NPJ Parkinsons Dis., 8, 100, https://doi.org/10.1038/s41531-022-00361-4.
  18. Pérez-Revuelta, B. I., Hettich, M. M., Ciociaro, A., Rotermund, C., Kahle, P. J., Krauss, S., and Di Monte, D. A. (2014) Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation, Cell Death Dis., 5, e1209, https://doi.org/10.1038/cddis.2014.175.
  19. Zhu, Z., Yang, C., Iyaswamy, A., Krishnamoorthi, S., Sreenivasmurthy, S. G., Liu, J., Wang, Z., Tong, B. C., Song, J., Lu, J., Cheung, K. H., and Li, M. (2019) Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease, Int. J. Mol. Sci., 20, 728, https://doi.org/10.3390/ijms20030728.
  20. Xicoy, H., Wieringa, B., and Martens, G. J. M. (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review, Mol. Neurodegener., 12, 10, https://doi.org/10.1186/s13024-017-0149-0.
  21. Kopytova, A. E., Rychkov, G. N., Nikolaev, M. A., Baydakova, G. V., Cheblokov, A. A., Senkevich, K. A., Bogdanova, D. A., Bolshakova, O. I., Miliukhina, I. V., Bezrukikh, V. A., Salogub, G. N., Sarantseva, S. V., Usenko, T. C., Zakharova, E. Y., Emelyanov, A. K., and Pchelina, S. N. (2021) Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and parkinsonism, Parkinsonism Relat. Disord., 84, 112-121, https://doi.org/10.1016/j.parkreldis.2021.02.003.
  22. Aflaki, E., Stubblefield, B. K., Maniwang, E., Lopez, G., Moaven, N., Goldin, E., Marugan, J., Patnaik, S., Dutra, A., Southall, N., Zheng, W., Tayebi, N., and Sidransky, E. (2014) Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs, Sci. Transl. Med., 6, 240ra73, https://doi.org/10.1126/scitranslmed. 3008659.
  23. Brown, R. A., Voit, A., Srikanth, M. P., Thayer, J. A., Kingsbury, T. J., Jacobson, M. A., Lipinski, M. M., Feldman, R. A., and Awad, O. (2019) mTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease IPSC-neuronal cells, Dis. Model Mech., 12, dmm038596, https://doi.org/10.1242/dmm.038596.
  24. Усенко Т. С., Башарова К. С., Безрукова А. И., Николаев М. А., Милюхина И. В., Байдакова Г. В., Захарова Е. Ю., Пчелина С. Н. (2022) Селективное ингибирование киназной активности LRRK2 как подход к терапии болезни Паркинсона, Медицинская генетика, 21, 26-29, https://doi.org/10.25557/2073-7998. 2022.12.26-29
  25. Kopytova, A. E., Rychkov, G. N., Cheblokov, A. A., Grigor’eva, E. V., Nikolaev, M. A., Yarkova, E. S., Sorogina, D. A., Ibatullin, F. M., Baydakova, G. V., Izyumchenko, A. D., Bogdanova, D. A., Boitsov, V. M., Rybakov, A. V., Miliukhina, I. V., Bezrukikh, V. A., Salogub, G. N., Zakharova, E. Y., Pchelina, S. N., and Emelyanov, A. K. (2023) Potential binding sites of pharmacological chaperone NCGC00241607 on mutant beta-glucocerebrosidase and its efficacy on patient-derived cell cultures in Gaucher and Parkinson’s disease, Int. J. Mol. Sci., 24, 9105, https://doi.org/10.3390/ijms24109105.
  26. Norradee, C., Khwanraj, K., Balit, T., and Dharmasaroja, P. (2023) Evaluation of the combination of metformin and rapamycin in an MPP+-treated SH-SY5Y model of Parkinson’s disease, Adv. Pharmacol. Pharm. Sci., 3830861, https://doi.org/10.1155/2023/3830861.
  27. Martínez, M.-A., Rodríguez, J.-L., Lopez-Torres, B., Martínez, M., Martínez-Larrañaga, M.-R., Maximiliano, J. E., Anadón, A., and Ares, I. (2020) Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways, Environ. Int., 135, 105414, https://doi.org/10.1016/j.envint.2019.105414.
  28. Pchelina, S., Baydakova, G., Nikolaev, M., Senkevich, K., Emelyanov, A., Kopytova, A., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Berkovich, O., Fedotova, E., Illarioshkin, S., and Zakharova, E. (2018) Blood lysosphingolipids accumulation in patients with Parkinson’s disease with glucocerebrosidase 1 mutations, Mov. Disord., 33, 1325-1330, https://doi.org/10.1002/mds.27393.
  29. Usenko, T. S., Senkevich, K. A., Bezrukova, A. I., Baydakova, G. V., Basharova, K. S., Zhuravlev, A. S., Gracheva, E. V., Kudrevatykh, A. V., Miliukhina, I. V., Krasakov, I. V., Khublarova, L. A., Fursova, I. V., Zakharov, D. V., Timofeeva, A. A., Irishina, Y. A., Palchikova, E. I., Zalutskaya, N. M., Emelyanov, A. K., Zakharova, E. Y., and Pchelina, S. N. (2022) Impaired sphingolipid hydrolase activities in dementia with Lewy bodies and multiple system atrophy, Mol. Neurobiol., 59, 2277-2287, https://doi.org/10.1007/s12035-021-02688-0.
  30. Usenko, T., Bezrukova, A., Basharova, K., Baydakova, G., Shagimardanova, E., Blatt, N., Rizvanov, A., Limankin, O., Novitskiy, M., Shnayder, N., Izyumchenko, A., Nikolaev, M., Zabotina, A., Lavrinova, A., Kulabukhova, D., Nasyrova, R., Palchikova, E., Zalutskaya, N., Miliukhina, I., Barbitoff, Y., Glotov, O., Glotov, A., Taraskina, A., Neznanov, N., Zakharova, E., and Pchelina, S. (2024) Altered sphingolipid hydrolase activities and alpha-synuclein level in late-onset schizophrenia, Metabolites, 14, 30, https://doi.org/10.3390/metabo14010030.
  31. Tsukuba, T., Yanagawa, M., Kadowaki, T., Takii, R., Okamoto, Y., and Yamamoto, K. (2013) Cathepsin E deficiency impairs autophagic proteolysis in macrophages, PLoS One, 8, e82415, https://doi.org/10.1371/journal.pone.0082415.
  32. Usenko, T. S., Senkevich, K. A., Basharova, K. S., Bezrukova, A. I., Baydakova, G. V., Tyurin, A. A., Beletskaya, M. V., Kulabukhova, D. G., Grunina, M. N., Emelyanov, A. K., Miliukhina, I. V., Timofeeva, A. A., Zakharova, E. Y., and Pchelina, S. N. (2023) LRRK2 exonic variants are associated with lysosomal hydrolase activities and lysosphingolipid alterations in Parkinson’s disease, Gene, 882, 147639, https://doi.org/10.1016/j.gene. 2023.147639.
  33. Pchelina, S., Emelyanov, A., Baydakova, G., Andoskin, P., Senkevich, K., Nikolaev, M., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Fedotova, E., Abramycheva, N., Usenko, T., Kulabukhova, D., Lavrinova, A., Kopytova, A., Garaeva, L., Nuzhnyi, E., Illarioshkin, S., and Zakharova, E. (2017) Oligomeric α-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease, Neurosci. Lett., 636, 70-76, https://doi.org/10.1016/ j.neulet.2016.10.039.
  34. Navarro-Romero, A., Montpeyó, M., and Martinez-Vicente, M. (2020) The emerging role of the lysosome in Parkinson’s disease, Cells, 9, 2399, https://doi.org/10.3390/cells9112399.
  35. Lu, J., Wu, M., and Yue, Z. (2020) Autophagy and Parkinson’s disease, Adv. Exp. Med. Biol., 1207, 21-51, https://doi.org/10.1007/978-981-15-4272-5_2.
  36. Sanchez-Mirasierra, I., Ghimire, S., Hernandez-Diaz, S., and Soukup, S. F. (2022) Targeting macroautophagy as a therapeutic opportunity to treat Parkinson’s disease, Front. Cell Dev. Biol., 10, 921314, https://doi.org/10.3389/fcell.2022.921314.
  37. Moors, T. E., Hoozemans, J. J. M., Ingrassia, A., Beccari, T., Parnetti, L., Chartier-Harlin, M. C., and van de Berg, W. D. J. (2017) Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease, Mol. Neurodegener., 12, 11, https://doi.org/10.1186/s13024-017-0154-3.
  38. Kinet, R., and Dehay, B. (2023) Pathogenic aspects and therapeutic avenues of autophagy in Parkinson’s disease, Cells, 12, 621, https://doi.org/10.3390/cells12040621.
  39. Saxton, R. A., and Sabatini, D. M. (2017) mTOR signaling in growth, metabolism, and disease, Cell, 168, 960-976, https://doi.org/10.1016/j.cell.2017.02.004.
  40. Panwar, V., Singh, A., Bhatt, M., Tonk, R. K., Azizov, S., Raza, A. S., Sengupta, S., Kumar, D., and Garg, M. (2023) Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease, Signal Transduct. Target Ther., 8, 375, https://doi.org/10.1038/s41392-023-01608-z.
  41. Chrienova, Z., Nepovimova, E., and Kuca, K. (2021) The role of mTOR in age-related diseases, J. Enzyme Inhib. Med. Chem., 36, 1678-1692, https://doi.org/10.1080/14756366.2021.1955873.
  42. Perluigi, M., Di Domenico, F., and Butterfield, D. A. (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy, Neurobiol. Dis., 84, 39-49, https://doi.org/10.1016/j.nbd.2015.03.014.
  43. Siracusa, R., Paterniti, I., Cordaro, M., Crupi, R., Bruschetta, G., Campolo, M., Cuzzocrea, S., and Esposito, E. (2018) Neuroprotective effects of temsirolimus in animal models of Parkinson’s disease, Mol. Neurobiol., 55, 2403-2419, https://doi.org/10.1007/s12035-017-0496-4.
  44. Jiang, T. F., Zhang, Y. J., Zhou, H. Y., Wang, H. M., Tian, L. P., Liu, J., Ding, J. Q., and Chen, S. D. (2013) Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/P70S6K signaling and the recovery of macroautophagy, J. Neuroimmune Pharmacol., 8, 356-369, https://doi.org/10.1007/s11481-012-9431-7.
  45. Zhang, Z. N., Hui, Z., Chen, C., Liang, Y., Tang, L. L., Wang, S. L., Xu, C. C., Yang, H., Zhao, Y., and Zhang, J. S. (2021) Mechanism of autophagy regulation in MPTP-induced PD mice via the mTOR signaling pathway by echinacoside, Neuropsychiatr. Dis. Treat., 17, 1397-1411, https://doi.org/10.2147/NDT.S299810.
  46. Crews, L., Spencer, B., Desplats, P., Patrick, C., Paulino, A., Rockenstein, E., Hansen, L., Adame, A., Galasko, D., and Masliah, E. (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy, PLoS One, 5, e9313, https://doi.org/10.1371/journal.pone.0009313.
  47. Chen, Y., and Zhou, X. (2020) Research progress of mTOR inhibitors, Eur. J. Med. Chem., 208, 112820, https://doi.org/10.1016/j.ejmech.2020.112820.
  48. Zhuang, X.-X., Wang, S.-F., Tan, Y., Song, J.-X., Zhu, Z., Wang, Z. Y., Wu, M. Y., Cai, C. Z., Huang, Z. J., Tan, J. Q., Su, H. X., Li, M., and Lu, J. H. (2020) Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson’s disease models, Cell Death Dis., 11, 128, https://doi.org/10.1038/s41419-020-2322-6.
  49. Dehay, B., Bové, J., Rodríguez-Muela, N., Perier, C., Recasens, A., Boya, P., and Vila, M. (2010) Pathogenic lysosomal depletion in Parkinson’s disease, J. Neurosci., 30, 12535-12544, https://doi.org/10.1523/JNEUROSCI. 1920-10.2010.
  50. Robak, L. A., Jansen, I. E., van Rooij, J., Uitterlinden, A. G., Kraaij, R., Jankovic, J., International Parkinson’s Disease Genomics Consortium (IPDGC), Heutink, P., and Shulman, J. M. (2017) Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease, Brain, 140, 3191-3203, https://doi.org/10.1093/ brain/awx285.
  51. Murphy, K., Gysbers, A., Abbott, S., Tayebi, N., Kim, W. S., Sidransky, E., Cooper, A., Garner, B., and Halliday, G. M. (2014) Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson’s disease, Brain, 137, 834-848, https://doi.org/10.1093/brain/awt367.
  52. Oftedal, L., Maple-Grødem, J., Dalen, I., Tysnes, O.-B., Pedersen, K. F., Alves, G., and Lange, J. (2023) Association of CSF glucocerebrosidase activity with the risk of incident dementia in patients with Parkinson disease, Neurology, 100, e388-e395, https://doi.org/10.1212/WNL.0000000000201418.
  53. Chiasserini, D., Paciotti, S., Eusebi, P., Persichetti, E., Tasegian, A., Kurzawa-Akanbi, M., Chinnery, P. F., Morris, C. M., Calabresi, P., Parnetti, L., and Beccari, T. (2015) Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies, Mol. Neurodegener., 10, 15, https://doi.org/10.1186/s13024-015-0010-2.
  54. Schneider, S. A., and Alcalay, R. N. (2020) Precision medicine in Parkinson’s disease: emerging treatments for genetic Parkinson’s disease, J. Neurol., 267, 860-869, https://doi.org/10.1007/s00415-020-09705-7.
  55. Anderson, J.P., Walker, D.E., Goldstein, J.M., De Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., and Chilcote, T. J. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease, J. Biol. Chem., 281, 29739-29752, https://doi.org/10.1074/jbc.M600933200.
  56. Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, 477, 107-111, https://doi.org/10.1038/nature10324.
  57. Decressac, M., Mattsson, B., Weikop, P., Lundblad, M., Jakobsson, J., and Björklund, A. (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity, Proc. Natl. Acad. Sci. USA, 110, E1817-E1826, https://doi.org/10.1073/pnas.1305623110.
  58. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N., and Rubinsztein, D. C. (2003) α-Synuclein is degraded by both autophagy and the proteasome, J. Biol. Chem., 278, 25009-25013, https://doi.org/10.1074/jbc.M300227200.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of dose-dependent inhibition of mTOR protein kinase by Torin 1 on the level of phosphorylated form of mTOR (Ser2448) protein. a - Western blot data for phosphorylated form of mTOR (Ser2448) protein in primary culture of peripheral blood macrophages; b - Western blot data for phosphorylated form of mTOR (Ser2448) protein in SH-SY5Y neuroblastoma cell line. c - Relative level of phosphorylated form of mTOR protein (Ser2448) in primary culture of peripheral blood macrophages (n = 6, where n is the number of independent samples); d - Relative level of phosphorylated form of mTOR protein (Ser2448) in neuroblastoma cell line SH-SY5Y (n = 5, where n is the number of independent cell lines). ** p < 0.01; *** p < 0.001; **** p < 0.0001

Download (220KB)
3. Fig. 2. Effect of dose-dependent inhibition of mTOR protein kinase by Torin 1 on the level of LC3B-II and GCase proteins. a - Western blot data for LC3B-II and GCase proteins in primary culture of peripheral blood macrophages; b - Western blot data for LC3B-II and GCase proteins in neuroblastoma cell line SH-SY5Y. c - Relative level of LC3B-II protein in primary culture of peripheral blood macrophages (n = 6, where n is the number of independent samples); d - Relative level of GCase protein in primary culture of peripheral blood macrophages (n = 6, where n is the number of independent samples); e - relative level of LC3B-II protein in SH-SY5Y neuroblastoma cell line (n = 5, where n is the number of independent cell lines); f - relative level of GCase protein in SH-SY5Y neuroblastoma cell line (n = 5, where n is the number of independent cell lines). * p < 0.05; ** p < 0.01; *** p < 0.001

Download (343KB)
4. Fig. 3. Evaluation of the degree of LC3B colocalisation with lysosomes during dose-dependent inhibition of mTOR protein kinase by Torin 1. a - Immunofluorescence data for LC3B protein and lysosomes in primary culture of peripheral blood macrophages, 10 μm; b - Immunofluorescence data for LC3B protein and lysosomes in neuroblastoma cell line SH-SY5Y, 10 μm. c - Degree of co-localisation of LC3B with lysosomes in primary culture of peripheral blood macrophages (n = 6, where n is the number of independent samples); d - Degree of co-localisation of LC3B with lysosomes in the neuroblastoma cell line SH-SY5Y (n = 5, where n is the number of independent cell lines). * p < 0.05; ** p < 0.01; **** p < 0.0001; ns - no statistical significance

Download (456KB)
5. Fig. 4. Activity of lysosomal enzymes (GCase, GLA, ASMase) and concentrations of corresponding lysosphingolipids (HexSph, LysoGb3, LysoSM) upon dose-dependent inhibition of mTOR protein kinase by Torin 1 in primary culture of peripheral blood macrophages (a and c; n = 6, where n is the number of independent samples) and SH-SY5Y neuroblastoma cell line (b and d; n = 5, where n is the number of independent cell lines). * p < 0.05; ** p < 0.01; ns - no statistical significance

Download (527KB)
6. Fig. 5. Effect of dose-dependent inhibition of mTOR protein kinase by Torin 1 on the level of different forms of alpha-synuclein protein (monomeric, phosphorylated (Ser129), tetrameric) in the neuroblastoma cell line SH-SY5Y (n = 5, where n is the number of independent cell lines). a -Western blot data for different forms of alpha-synuclein protein (monomeric, phosphorylated (Ser129), tetrameric). b - Relative level of phosphorylated (Ser129) form of alpha-synuclein protein; c - relative level of monomeric form of alpha-synuclein protein; d - relative level of tetrameric form of alpha-synuclein protein; ** p < 0.01

Download (280KB)

Copyright (c) 2024 Russian Academy of Sciences