Serum exosome protein composition in ischemic stroke patients is associated with cognitive impairment in the post-stroke period

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ischemic stroke (IS) and subsequent neuropsychiatric disorders are among the leading causes of disability worldwide. Several strategies have been previously proposed to utilize exosomes to assess the risk of IS-related diseases. The aim of this work was to evaluate serum exosome proteins of IS patients in the chronic post-stroke period and to search for their associations with the development of post-stroke moderate cognitive impairment (MCI). Comparative quantitative proteomic analysis of serum exosomes of patients without poststroke MCI (19 patients mean age 52.0 ± 8.1 years) and patients with post-stroke MCI (11 patients, mean age 64.8 ± 5.6 years) revealed significant differences in the levels of 62 proteins out of 186 identified. Increased levels of proteins associated with the immune system and decreased levels of proteins involved in lipid metabolism were observed in patients with MCI compared to patients without MCI in the chronic post-stroke period. The obtained data suggest that a higher level of immune system activation in patients in the distant period after IS may be one of the risk factors for the development of post-stroke cognitive disorders and suggest the participation of exosomal transport in these processes.

Full Text

Restricted Access

About the authors

T. A. Druzhkova

Moscow Research and Clinical Center for Neuropsychiatry

Email: nata_gul@ihna.ru
Russian Federation, 115419 Moscow

M. Yu. Zhanina

Moscow Research and Clinical Center for Neuropsychiatry; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: nata_gul@ihna.ru

Department of Functional Biochemistry of Nervous System

Russian Federation, 115419 Moscow; 117485 Moscow

E. E. Vladimirova

M. P. Konchalovsky City Clinical Hospital

Email: nata_gul@ihna.ru
Russian Federation, 124489 Moscow

A. B. Guekht

Moscow Research and Clinical Center for Neuropsychiatry; Pirogov Russian National Research Medical University

Email: nata_gul@ihna.ru
Russian Federation, 115419 Moscow; 119049 Moscow

N. V. Gulyaeva

Moscow Research and Clinical Center for Neuropsychiatry; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Author for correspondence.
Email: nata_gul@ihna.ru

Department of Functional Biochemistry of Nervous System

Russian Federation, 115419 Moscow; 117485 Moscow

References

  1. Robinson, R. G., and Jorge, R. E. (2016) Post-stroke depression: a review, Am. J. Psychiatry, 173, 221-231, https://doi.org/10.1176/appi.ajp.2015.15030363.
  2. He, A., Wang, Zu., Wu, X., Sun, W., Yang, K., and Feng, W. (2023) Incidence of post-stroke cognitive impairment in patients with first-ever ischemic stroke: a multicenter cross-sectional study in China, Lancet Reg. Health West. Pacific, 33, 100687, https://doi.org/10.1016/j.lanwpc.2023.100687.
  3. Sexton, E., McLoughlin, A., Williams, D. J., Merriman, N. A., and Donnelly, N. (2019) Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke, Eur. Stroke J., 4, 160-171, https://doi.org/10.1177/2396987318825484.
  4. Sachdev, P. S., Lipnicki, D. M., Crawford, J. D., Wen, W., and Brodaty, H. (2014) Progression of cognitive impairment in stroke/TIA patients over 3 years, J. Neurol. Neurosurg. Psychiatr., 85,1324-1330, https://doi.org/10.1136/jnnp-2013-306776.
  5. Altieri, M., Di, Piero V., Pasquini, M., Gasparini, M., Vanacore, N., and Vicenzini, E. (2004) Delayed poststroke dementia: a 4-year follow-up study, Neurology, 62, 2193-2197, https://doi.org/10.1212/01.WNL.0000130501.79012.1A.
  6. Rothenburg, L. S., Herrmann, N., Swardfager, W., Black, S. E., Tennen, G., and Kiss, A. (2010) The relationship between inflammatory markers and post stroke cognitive impairment, J. Geriatr. Psychiatr. Neurol., 23, 199-205, https://doi.org/10.1177/08919887103735.
  7. Narasimhalu, K., Lee, J., Leong, Y.-L., Ma, L., De Silva, D. A., and Wong, M.-C. (2015) Inflammatory markers and their association with post stroke cognitive decline, Int. J. Stroke, 10, 513-518, https://doi.org/10.1111/ijs.12001.
  8. Sandvig, H. V., Aam, S., Alme, K. N., Askim, T., Beyer, M. K., Ellekjær, H., Ihle-Hansen, H., Lydersen, S., Mollnes, T. E., Munthe-Kaas, R., Næss, H., Saltvedt, I., Seljeseth, Y. M., Thingstad, P., Wethal, T., and Knapskog, A. B. (2023) Plasma inflammatory biomarkers are associated with poststroke cognitive impairment: the Nor-COAST study, Stroke, 54, 1303-1311, https://doi.org/10.1161/STROKEAHA.122.041965.
  9. Chen, W., Li, C., Liang, W., Li, Y., Zou, Z., Xie, Y., Liao, Y., Yu, L., Lin, Q., Huang, M., Li, Z., and Zhu, X. (2022) The roles of optogenetics and technology in neurobiology: a review, Front. Aging Neurosci., 14, 867863, https://doi.org/10.3389/fnagi.2022.867863.
  10. Ozaki, T., Nakamura, H., and Kishima, H. (2019) Therapeutic strategy against ischemic stroke with the concept of neurovascular unit, Neurochem. Int., 126, 246-251, https://doi.org/10.1016/j.neuint.2019.03.022.
  11. Tuo, Q. Z., Zhang, S. T., and Lei, P. (2022) Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications, Med. Res. Rev., 42, 259-305, https://doi.org/10.1002/med.21817.
  12. Walsh, J., Tozer, D. J., Sari, H., Hong, Y. T., Drazyk, A., and Williams, G. (2021) Microglial activation and blood-brain barrier permeability in cerebral small vessel disease, Brain, 144, 1361-1371, https://doi.org/10.1093/ brain/awab003.
  13. Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S., and Li, P. (2020) Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications, Int. J. Nanomed., 15, 6917-6934, https:// doi.org/10.2147/IJN.S264498.
  14. Goetzl, E. J., Mustapic, M., Kapogiannis, D., Eitan, E., Lobach, I. V., Goetzl, L., Schwartz, J. B., and Miller, B. L. (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease, FASEB J., 30, 3853-3859, https://doi.org/10.1096/fj.201600756R.
  15. Winston, C. N., Goetzl, E. J., Akers, J. C., Carter, B. S., Rockenstein, E. M., Galasko, D., Masliah, E., and Rissman, R. A. (2016) Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile, Alzheimers Dement. (Amst), 3, 63-72, https://doi.org/10.1016/j.dadm.2016.04.001.
  16. Badhwar, A., and Haqqani, A. S. (2020) Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer’s disease, Alzheimers Dement. (Amst), 12, e12001, https://doi.org/10.1002/dad2.12001.
  17. Chan, L., Chung, C. C., Chen, J. H., Yu, R. C., and Hong, C. T. (2021) Cytokine profile in plasma extracellular vesicles of Parkinson’s disease and the association with cognitive function, Cells, 10, 604, https://doi.org/10.3390/cells10030604.
  18. Abner, E. L., Elahi, F. M., Jicha, G. A., Mustapic, M., Al-Janabi, O., Kramer, J. H., Kapogiannis, D., and Goetzl, E. J. (2020) Endothelial-derived plasma exosome proteins in Alzheimer’s disease angiopathy, FASEB J., 34, 5967-5974, https://doi.org/10.1096/fj.202000034R.
  19. Brenna, S., Altmeppen, H. C., Mohammadi, B., Rissiek, B., Schlink, F., and Ludewig, P. (2020) Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake, J. Extracell. Vesicles, 9, 1809065, https://doi.org/10.1080/ 20013078.2020.1809065.
  20. Doyle, L. M., and Wang, M. Z. (2029) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis, Cells, 8, 727, https://doi.org/10.3390/cells8070727.
  21. Hong, S. B., Yang, H., Manaenko, A., Lu, J., Mei, Q., and Hu, Q. (2019) Potential of exosomes for the treatment of stroke, Cell. Transpl., 28, 662-670, https://doi.org/10.1177/0963689718816990.
  22. Lee, E. C., Ha, T.W., Lee, D.-H., Hong, D.-Y., Park, S.-W., Lee, J. Y., Lee, M. R., and Oh, J. S. (2022) Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment, Int. J. Mol. Sci., 23, 8367, https://doi.org/10.3390/ijms23158367.
  23. Venkat, P., Chen, J., and Chopp, M. (2018) Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke, J. Cereb. Blood Flow Metab., 38, 2165-2178, https://doi.org/10.1177/0271678X18782789.
  24. Lachenal, G., Pernet-Gallay, K., Chivet, M., Hemming, F. J., Belly, A., and Bodon, G. (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity, Mol. Cell Neurosci., 46, 409-418, https://doi.org/10.1016/j.mcn.2010.11.004.
  25. Bang, O. Y., and Kim, E. H. (2019) Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress, Front. Neurol., 10, 211, https://doi.org/10.3389/fneur.2019.00211.
  26. Zagrean, A. M., Hermann, D. M., Opris, I., Zagrean, L., and Popa-Wagner, A. (2018) Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications, Front. Neurosci., 12, 811, https://doi.org/10.3389/fnins.2018.00811.
  27. Lyden, P. (2017) Using the national institutes of health stroke scale: a cautionary tale, Stroke, 48, 513-519, https://doi.org/10.1161/STROKEAHA.116.015434.
  28. Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., and Whitehead, V. (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment, J. Am. Geriatr. Soc., 53, 695-699, https://doi.org/10.1111/j.1532-5415.2005.53221.x.
  29. Zigmond, A. S., and Snaith, R. P. (1983) The hospital anxiety and depression scale, Acta Psychiatr. Scand., 67, 361-370, https://doi.org/10.1111/j.1600-0447.1983.tb09716.x.
  30. Novikova, S.E., Farafonova, T. E., Tikhonova, O. V., Shushkova, N. A., Pyatnitsky, M. A., Zgoda, V. G., Ponomarenko, E. A., Lisitsa, A. V., Grigoryev, A.I., Tutelyan, V. A., and Archakov, A. I. (2020) Mass-spectrometric MRM analysis of FDA-verified proteins in the blood plasma of healthy volunteers, Biomed. Khim., 66, 294-316, https://doi.org/10.18097/PBMC20206604294.
  31. Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc., 11, 2301-2319, https://doi.org/10.1038/nmeth.3901.
  32. Yu, S.-H., Kyriakidou, P., and Cox, J. (2020) Isobaric matching between runs and novel PSM-level normalization in MaxQuant strongly improve reporter ion-based quantification, J. Proteome Res., 19, 3945-3954, https:// doi.org/10.1021/acs.jproteome.0c00209.
  33. Chen, R. L., Balami, J. S., Esiri, M. M., Chen, L. K., and Buchan, A. M. (2010) Ischemic stroke in the elderly: an overview of evidence, Nat. Rev. Neurol., 6, 256-265, https://doi.org/10.1038/nrneurol.2010.36.
  34. Chung, H. Y., Kim, D. H., Lee, E. K., Chung, K. W., Chung, S., Lee, B., Seo, A. Y., Chung, J. H., Jung, Y. S., Im, E., Lee, J., Kim, N. D., Choi, Y. J., Im, D. S., and Yu, B. P. (2018) Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept, Aging Dis., 10, 367-382, https://doi.org/10.14336/AD.2018.0324.
  35. Cribbs, D. H., Berchtold, N. C., Perreau, V., Coleman, P. D., Rogers, J., Tenner, A. J., and Cotman, C. W. (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study, J. Neuroinflamm., 9, 179, https://doi.org/10.1186/1742-2094-9-179.
  36. Corraini, P., Henderson, V. W., Ording, A. G., Pedersen, L., Horváth-Puhó, E., and Sørensen, H. T. (2017) Long-term risk of dementia among survivors of ischemic or hemorrhagic stroke, Stroke, 48, 180-186, https://doi.org/10.1161/STROKEAHA.116.015242.
  37. Simats, A., and Liesz, A. (2022) Systemic inflammation after stroke: implications for post-stroke comorbidities, EMBO Mol. Med., 14, e16269, https://doi.org/10.15252/emmm.202216269.
  38. Chan, B. D., Wong, W. Y., Lee, M. M., Cho, W. C., Yee, B. K., Kwan, Y. W., and Tai, W. C. (2019) Exosomes in inflammation and inflammatory disease, Proteomics, 19, e1800149, https://doi.org/10.1002/pmic.201800149.
  39. Ozansoy, M., Mikati, H., Velioglu, H. A., and Yulug, B. (2022) Exosomes: a missing link between chronic systemic inflammation and Alzheimer’s disease? Biomed. Pharmacother., 159, 114161, https://doi.org/10.1016/j.biopha.2022.114161.
  40. De Rivero Vaccari, J. P., Brand, F., Adamczak, S., Lee, S. W., Perez-Barcena, J., and Wang, M. Y. (2016). Exosome-mediated inflammasome signaling after central nervous system injury, J. Neurochem., 136 (Suppl. 1), 39-48, https://doi.org/10.1111/jnc.13036.
  41. Ryan, T. AJ., and O’Neill, L. A. J. (2022) Innate immune signaling and immunothrombosis: new insights and therapeutic opportunities, Eur. J. Immunol., 52, 1024-1034, https://doi.org/10.1002/eji.202149410.
  42. Ma, Y., Liu, Y., Zhang, Z., and Yang, G. Y. (2019) Significance of complement system in ischemic stroke: a comprehensive review, Aging Dis., 10, 429-462, https://doi.org/10.14336/AD.2019.0119.
  43. Stokowska, A., Olsson, S., Holmegaard, L., Jood, K., Blomstrand, C., Jern, C., and Pekna, M. (2013) Cardioembolic and small vessel disease stroke show differences in associations between systemic C3 levels and outcome, PLoS One, 8, e72133, https://doi.org/10.1371/journal.pone.0072133.
  44. Stokowska, A., Olsson, S., Holmegaard, L., Jood, K., Blomstrand, C., and Jern, C. (2011) Plasma C3 and C3a levels in cryptogenic and large-vessel disease stroke: associations with outcome, Cerebrovasc. Dis., 32, 114-122, https://doi.org/10.1159/000328238.
  45. Zhang, B., Yang, N., and Gao, C. (2015) Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months, J. Thromb. Thrombol., 39, 209-214, https://doi.org/10.1007/s11239-014-1100-7.
  46. Olsson, S., Stokowska, A., Holmegaard, L., Jood, K., Blomstrand, C., and Pekna, M. (2011) Genetic variation in complement component C3 shows association with ischaemic stroke, Eur. J. Neurol., 18, 1272-1274, https:// doi.org/10.1111/j.1468-1331.2011.03377.x.
  47. Duggan, M. R., Lu, A., Foster, T. C., Wimmer, M., and Parikh, V. (2022) Exosomes in age-related cognitive decline: mechanistic insights and improving outcomes, Front. Aging Neurosci., 14, 834775, https://doi.org/10.3389/fnagi.2022.834775.
  48. Mocco, J., Mack, W. J., Ducruet, A. F., Sosunov, S. A., Sughrue, M. E., Hassid, B. G., Nair, M. N., Laufer, I., Komotar, R. J., Claire, M., Holland, H., Pinsky, D. J., and Connolly, E. S. Jr. (2006) Complement component C3 mediates inflammatory injury following focal cerebral ischemia, Circ. Res., 99, 209-217, https://doi.org/10.1161/ 01.RES.0000232544.90675.42.
  49. Jumeau, C., Awad. F., Assrawi, E., Cobret, L., Duquesnoy, P., Giurgea, I., Valeyre, D., Grateau, G., Amselem, S., Bernaudin, J. F., and Karabina, S. A. (2019) Expression of SAA1, SAA2 and SAA4 genes in human primary monocytes and monocyte-derived macrophages, PLoS One, 14, e0217005, https://doi.org/10.1371/journal.pone.0217005.
  50. Ali, K., Middleton, M., Puré, E., and Rader, D. J. (2005) Apolipoprotein E suppresses the type I inflammatory response in vivo, Circ. Res., 9, 922-927, https://doi.org/10.1161/01.RES.0000187467.67684.43.
  51. Zhang, H. L., Wu, J., and Zhu, J. (2010) The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis, Clin. Dev. Immunol., 2010, 186813, https://doi.org/10.1155/2010/186813.
  52. Massri, M., Toonen, E. J. M., Sarg, B., Kremser, L., Grasse, M., Fleischer, V., Torres-Quesada, O., Hengst, L., Skjoedt, M.-O., Bayarri-Olmos, R., Rosbjerg, A., Garred, P., Orth-Höller, D., Prohászka, Z., and Würzner, R. (2024) Complement C7 and clusterin form a complex in circulation, Front. Immunol., 15, 1330095, https://doi.org/10.3389/fimmu.2024.1330095.
  53. Farjo, K. M., Farjo, R. A., Halsey, S., Moiseyev, G., and Ma, J. X. (2012) Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism, Mol. Cell Biol., 32, 5103-5115, https://doi.org/10.1128/MCB.00820-12.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heatmap showing the results of hierarchical clustering of samples and protein profiles of all patients after AI. Clustering of protein expression has been shown in groups of patients without and with HCN

Download (535KB)

Copyright (c) 2024 Russian Academy of Sciences