Cardiac Myosin and Thin Filament as a Target for Lead and Cadmium Divalent Cations
- Authors: Gerzen O.P.1, Potoskueva Y.K.1, Tzybina A.E.1, Myachina T.A.1, Nikitina L.V.1
-
Affiliations:
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 89, No 7 (2024)
- Pages: 1218-1228
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/676562
- DOI: https://doi.org/10.31857/S0320972524070068
- EDN: https://elibrary.ru/WNFGAG
- ID: 676562
Cite item
Abstract
Lead and cadmium, which are heavy metals widely distributed in the environment, significantly contribute to cardiovascular morbidity and mortality. Using Leadmium Green dye, we have shown that lead and cadmium enter the cardiomyocytes, distributing throughout the cell. Using an in vitro motility assay, we have shown that the sliding velocity of actin and native thin filaments over myosin decreases with increasing concentrations of Pb2+ and Cd2+. Significantly lower concentrations of Pb2+ and Cd2+ (0.6 mM) were required to stop the movement of thin filaments over myosin compared to stopping actin movement over the same myosin (1.1-1.6 mM). A lower concentration of Cd2+ (1.1 mM) needed to stop actin movement over myosin compared to the Pb2++Cd2+ combination (1.3 mM) and lead alone (1.6 mM). There were no differences found in the lead and cadmium cations’ effects on the relative force developed by myosin heads or the number of actin filaments bound to myosin. The sliding velocity of actin over myosin in the left atrium, right and left ventricles changed equally when exposed to the same dose of the same metal. Thus, we have demonstrated for the first time that Pb2+ and Cd2+ can directly affect myosin and thin filament function, with Cd2+ exerting a more toxic influence on myosin function compared to Pb2+.
Keywords
Full Text

About the authors
O. P. Gerzen
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: o.p.gerzen@gmail.com
Russian Federation, Ekaterinburg
Yu. K. Potoskueva
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Email: o.p.gerzen@gmail.com
Russian Federation, Ekaterinburg
A. E. Tzybina
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Email: o.p.gerzen@gmail.com
Russian Federation, Ekaterinburg
T. A. Myachina
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Email: o.p.gerzen@gmail.com
Russian Federation, Ekaterinburg
L. V. Nikitina
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Email: o.p.gerzen@gmail.com
Russian Federation, Ekaterinburg
References
- Haselgrove, J. C., and Huxley, H. E. (1973) X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle, J. Mol. Biol., 77, 549-568, https://doi.org/10.1016/0022-2836(73)90222-2.
- Gordon, A. M., Homsher, E., and Regnier, M. (2000) Regulation of contraction in striated muscle, Physiol. Rev., 80, 853-924, https://doi.org/10.1152/physrev.2000.80.2.853.
- Walklate, J., Ferrantini, C., Johnson, C. A., Tesi, C., Poggesi, C., and Geeves, M. A. (2021) Alpha and beta myosin isoforms and human atrial and ventricular contraction, Cell. Mol. Life Sci., 78, 7309-7337, https://doi.org/10.1007/s00018-021-03971-y.
- Yamashita, H. (2003) Myosin light chain isoforms modify force-generating ability of cardiac myosin by changing the kinetics of actin-myosin interaction, Cardiovasc. Res., 60, 580-588, https://doi.org/10.1016/j. cardiores.2003.09.011.
- Da Silva, A. C. R., Kendrick-Jones, J., and Reinach, F. C. (1995) Determinants of ion specificity on EF-hands sites, J. Biol. Chem., 270, 6773-6778, https://doi.org/10.1074/jbc.270.12.6773.
- Sitbon, Y. H., Yadav, S., Kazmierczak, K., and Szczesna-Cordary, D. (2020) Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease, J. Muscle Res. Cell Motil., 41, 313-327, https://doi.org/10.1007/s10974-019-09517-x.
- Walker, B. C., Walczak, C. E., and Cochran, J. C. (2021) Switch‐1 instability at the active site decouples ATP hydrolysis from force generation in myosin II, Cytoskeleton, 78, 3-13, https://doi.org/10.1002/cm.21650.
- Gordon, A. M., Regnier, M., and Homsher, E. (2001) Skeletal and cardiac muscle contractile activation: tropomyosin “rocks and rolls,” Physiology, 16, 49-55, https://doi.org/10.1152/physiologyonline.2001.16.2.49.
- World Health Organization (2019) The Public Health Impact of Chemicals: Knowns and Unknowns. Data Addendum for 2019.
- Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., and Yang, L. (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment, Environ. Sci. Pollut. Res., 23, 8244-8259, https://doi.org/10.1007/s11356-016-6333-x.
- Rosin, A. (2009) The long-term consequences of exposure to lead, Isr. Med. Assoc. J., 11, 689-694.
- Suwazono, Y., Kido, T., Nakagawa, H., Nishijo, M., Honda, R., Kobayashi, E., Dochi, M., and Nogawa, K. (2009) Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure, Biomarkers, 14, 77-81, https://doi.org/10.1080/13547500902730698.
- Ali, S., Awan, Z., Mumtaz, S., Shakir, H. A., Ahmad, F., Ulhaq, M., Tahir, H. M., Awan, M. S., Sharif, S., Irfan, M., and Khan, M. A. (2020) Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits, Environ. Sci. Pollut. Res., 27, 29266-29279, https://doi.org/10.1007/s11356-020-09011-9.
- Davuljigari, C. B., and Gottipolu, R. R. (2020) Late-life cardiac injury in rats following early life exposure to lead: reversal effect of nutrient metal mixture, Cardiovasc. Toxicol., 20, 249-260, https://doi.org/10.1007/s12012-019-09549-2.
- Tai, Y.-T., Chou, S.-H., Cheng, C.-Y., Ho, C.-T., Lin, H.-C., Jung, S.-M., Chu, P.-H., and Ko, F.-H. (2022) The preferential accumulation of cadmium ions among various tissues in mice, Toxicol. Rep., 9, 111-119, https://doi.org/10.1016/ j.toxrep.2022.01.002.
- Borné, Y., Barregard, L., Persson, M., Hedblad, B., Fagerberg, B., and Engström, G. (2015) Cadmium exposure and incidence of heart failure and atrial fibrillation: a population-based prospective cohort study, BMJ Open, 5, e007366, https://doi.org/10.1136/bmjopen-2014-007366.
- Ruiz-Hernandez, A., Navas-Acien, A., Pastor-Barriuso, R., Crainiceanu, C. M., Redon, J., Guallar, E., and Tellez-Plaza, M. (2017) Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004, Int. J. Epidemiol., 46, 1903-1912, https://doi.org/10.1093/ije/dyx176.
- Messner, B., Knoflach, M., Seubert, A., Ritsch, A., Pfaller, K., Henderson, B., Shen, Y. H., Zeller, I., Willeit, J., Laufer, G., Wick, G., Kiechl, S., and Bernhard, D. (2009) Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance, Arterioscler. Thromb. Vasc. Biol., 29, 1392-1398, https://doi.org/10.1161/ATVBAHA.109.190082.
- Fatima, G., Raza, A. M., Hadi, N., Nigam, N., and Mahdi, A. A. (2019) Cadmium in human diseases: it’s more than just a mere metal, Indian J. Clin. Biochem., 34, 371-378, https://doi.org/10.1007/s12291-019-00839-8.
- Ferreira De Mattos, G., Costa, C., Savio, F., Alonso, M., and Nicolson, G. L. (2017) Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels, Biophys. Rev., 9, 807-825, https://doi.org/10.1007/s12551-017-0303-5.
- Ferreira, G., Santander, A., Chavarría, L., Cardozo, R., Savio, F., Sobrevia, L., and Nicolson, G. L. (2022) Functional consequences of lead and mercury exposomes in the heart, Mol. Aspects Med., 87, 101048, https://doi.org/ 10.1016/j.mam.2021.101048.
- Fioresi, M., Furieri, L. B., Simões, M. R., Ribeiro, R. F., Jr., Meira, E. F., Fernandes, A. A., Stefanon, I., and Vassallo, D. V. (2013) Acute exposure to lead increases myocardial contractility independent of hypertension development, Braz. J. Med. Biol. Res., 46, 178-185, https://doi.org/10.1590/1414-431X20122190.
- Javorac, D., Tatović, S., Anđelković, M., Repić, A., Baralić, K., Djordjevic, A. B., Mihajlović, M., Stevuljević, J. K., Đukić-Ćosić, D., Ćurčić, M., Antonijević, B., and Bulat, Z. (2022) Low-lead doses induce oxidative damage in cardiac tissue: Subacute toxicity study in Wistar rats and Benchmark dose modelling, Food Chem. Toxicol., 161, 112825, https://doi.org/10.1016/j.fct.2022.112825.
- Patra, R. C., Rautray, A. K., and Swarup, D. (2011) Oxidative stress in lead and cadmium toxicity and its amelioration, Vet. Med. Int., 2011, 1-9, https://doi.org/10.4061/2011/457327.
- Wang, Y., Fang, J., Leonard, S. S., and Krishna Rao, K. M. (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species, Free Radic. Biol. Med., 36, 1434-1443, https://doi.org/10.1016/j.freeradbiomed.2004.03.010.
- Chou, S.-H., Lin, H.-C., Chen, S.-W., Tai, Y.-T., Jung, S.-M., Ko, F.-H., Pang, J.-H. S., and Chu, P.-H. (2023) Cadmium exposure induces histological damage and cytotoxicity in the cardiovascular system of mice, Food Chem. Toxicol., 175, 113740, https://doi.org/10.1016/j.fct.2023.113740.
- Li, C., Shi, L., Peng, C., Yu, G., Zhang, Y., and Du, Z. (2021) Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via autophagy activation, Chem. Biol. Interact., 337, 109331, https://doi.org/10.1016/j.cbi.2020.109331.
- Shen, J., Wang, X., Zhou, D., Li, T., Tang, L., Gong, T., Su, J., and Liang, P. (2018) Modelling cadmium‐induced cardiotoxicity using human pluripotent stem cell‐derived cardiomyocytes, J. Cell. Mol. Med., 22, 4221-4235, https://doi.org/10.1111/jcmm.13702.
- Katsnelson, B. A., Klinova, S. V., Gerzen, O. P., Balakin, A. A., Lookin, O. N., Lisin, R. V., Nabiev, S. R., Privalova, L. I., Minigalieva, I. A., Panov, V. G., Katsnelson, L. B., Nikitina, L. V., Kuznetsov, D. A., and Protsenko, Y. L. (2020) Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination, Food Chem. Toxicol., 144, 111641, https:// doi.org/10.1016/j.fct.2020.111641.
- Klinova, S. V., Minigalieva, I. A., Protsenko, Y. L., Sutunkova, M. P., Ryabova, I. V., Gerzen, O. P., Nabiev, S. R., Balakin, A. A., Lookin, O. N., Lisin, R. V., Kuznetsov, D. A., Privalova, L. I., Panov, V. G., Chernyshov, I. N., Katsnelson, L. B., Nikitina, L. V., and Katsnelson, B. A. (2021) Analysis of changes in the rat cardiovascular system under the action of lead intoxication and muscular exercise, Hyg. Sanit., 100, 1467-1474, https://doi.org/10.47470/0016-9900-2021-100-12-1467-1474.
- Protsenko, Y. L., Klinova, S. V., Gerzen, O. P., Privalova, L. I., Minigalieva, I. A., Balakin, A. A., Lookin, O. N., Lisin, R. V., Butova, K. A., Nabiev, S. R., Katsnelson, L. B., Nikitina, L. V., and Katsnelson, B. A. (2020) Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination, Toxicol. Rep., 7, 433-442, https://doi.org/10.1016/j.toxrep.2020.03.001.
- Protsenko, Y. L., Katsnelson, B. A., Klinova, S. V., Lookin, O. N., Balakin, A. A., Nikitina, L. V., Gerzen, O. P., Minigalieva, I. A., Privalova, L. I., Gurvich, V. B., Sutunkova, M. P., and Katsnelson, L. B. (2018) Effects of subchronic lead intoxication of rats on the myocardium contractility, Food Chem. Toxicol., 120, 378-389, https://doi.org/10.1016/j.fct.2018.07.034.
- Gerzen, O. P., Nabiev, S. R., Klinova, S. V., Minigalieva, I. A., Sutunkova, M. P., Katsnelson, B. A., and Nikitina, L. V. (2022) Molecular mechanisms of mechanical function changes of the rat myocardium under subchronic lead exposure, Food Chem. Toxicol., 169, 113444, https://doi.org/10.1016/j.fct.2022.113444.
- Tang, N., Liu, X., Jia, M.-R., Shi, X.-Y., Fu, J.-W., Guan, D.-X., and Ma, L. Q. (2022) Amine- and thiol-bifunctionalized mesoporous silica material for immobilization of Pb and Cd: Characterization, efficiency, and mechanism, Chemosphere, 291, 132771, https://doi.org/10.1016/j.chemosphere.2021.132771.
- De Souza, I. D., De Andrade, A. S., and Dalmolin, R. J. S. (2018) Lead-interacting proteins and their implication in lead poisoning, Crit. Rev. Toxicol., 48, 375-386, https://doi.org/10.1080/10408444.2018.1429387.
- Kirberger, M., and Yang, J. J. (2008) Structural differences between Pb2+- and Ca2+-binding sites in proteins: Implications with respect to toxicity, J. Inorg. Biochem., 102, 1901-1909, https://doi.org/10.1016/j.jinorgbio. 2008.06.014.
- Yu, H., Zhen, J., Xu, J., Cai, L., Leng, J., Ji, H., and Keller, B. B. (2020) Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothionein-dependent and independent mechanisms, Acta Pharmacol. Sin., 41, 638-649, https://doi.org/10.1038/s41401-019-0320-y.
- Vassallo, D. V., Lebarch, E. C., Moreira, C. M., Wiggers, G. A., and Stefanon, I. (2008) Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium, Braz. J. Med. Biol. Res., 41, 789-795, https://doi.org/10.1590/S0100-879X2008000900008.
- Chao, S., Bu, C.-H., and Cheung, W. Y. (1990) Activation of troponin C by Cd2+ and Pb2+, Arch. Toxicol., 64, 490-496, https://doi.org/10.1007/BF01977632.
- Chao, S. H., Suzuki, Y., Zysk, J. R., and Cheung, W. Y. (1984) Activation of calmodulin by various metal cations as a function of ionic radius, Mol. Pharmacol., 26, 75-82.
- Shirran, S. L., and Barran, P. E. (2009) The use of ESI-MS to probe the binding of divalent cations to calmodulin, J. Am. Soc. Mass Spectrom., 20, 1159-1171, https://doi.org/10.1016/j.jasms.2009.02.008.
- Butova, X. A., Myachina, T. A., and Khokhlova, A. D. (2021) A combined Langendorff-injection technique for simultaneous isolation of single cardiomyocytes from atria and ventricles of the rat heart, MethodsX, 8, 101189, https://doi.org/10.1016/j.mex.2020.101189.
- Margossian, S. S., and Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle, Methods Enzymol., 85, 55-71, https://doi.org/10.1016/0076-6879(82)85009-x.
- Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin, Methods Enzymol., 85, 164-181, https://doi.org/10.1016/0076-6879(82)85020-9.
- Li, A., Nelson, S. R., Rahmanseresht, S., Braet, F., Cornachione, A. S., Previs, S. B., O’Leary, T. S., McNamara, J. W., Rassier, D. E., Sadayappan, S., Previs, M. J., and Warshaw, D. M. (2019) Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems, Proc. Natl. Acad. Sci. USA, 116, 21882-21892, https://doi.org/10.1073/pnas.1910549116.
- Gerzen, O. P., Potoskueva, Iu. K., Permyakova, Yu. V., Grebenschchikova, A. V., Selezneva, I. S., and Nikitina, L. V. (2022) SDS-PAGE for myosin heavy chains: fast and furious, J. Evol. Biochem. Physiol., 58, S92-S97, https://doi.org/10.1134/S0022093022070109.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
- Nikitina, L. V., Kopylova, G. V., Shchepkin, D. V., Nabiev, S. R., and Bershitsky, S. Y. (2015) Investigations of molecular mechanisms of actin-myosin interactions in cardiac muscle, Biochemistry (Moscow), 80, 1748-1763, https://doi.org/10.1134/S0006297915130106.
- Haeberle, J. R., and Hemric, M. E. (1995) Are actin filaments moving under unloaded conditions in the in vitro motility assay? Biophys. J., 68, 306S-310S; discussion 310S-311S.
- Gerzen, O. P., Votinova, V. O., Potoskueva, I. K., Tzybina, A. E., and Nikitina, L. V. (2023) Direct effects of toxic divalent cations on contractile proteins with implications for the heart: unraveling mechanisms of dysfunction, Int. J. Mol. Sci., 24, 10579, https://doi.org/10.3390/ijms241310579.
- Ge, J., Gargey, A., Nesmelova, I. V., and Nesmelov, Y. E. (2019) CaATP prolongs strong actomyosin binding and promotes futile myosin stroke, J. Muscle Res. Cell Motil., 40, 389-398, https://doi.org/10.1007/s10974-019-09556-4.
- Polosukhina, K., Eden, D., Chinn, M., and Highsmith, S. (2000) CaATP as a substrate to investigate the myosin lever arm hypothesis of force generation, Biophys. J., 78, 1474-1481, https://doi.org/10.1016/S0006-3495(00)76700-2.
- Snyder, E. E., Buoscio, B. W., and Falke, J. J. (1990) Calcium(II) site specificity: effect of size and charge on metal ion binding to an EF-hand-like site, Biochemistry, 29, 3937-3943, https://doi.org/10.1021/bi00468a021.
- Kopp, S. J., Bárány, M., Erlanger, M., Perry, E. F., and Perry, H. M. (1980) The influence of chronic low-level cadmium and/or lead feeding on myocardial contractility related to phosphorylation of cardiac myofibrillar proteins, Toxicol. Appl. Pharmacol., 54, 48-56, https://doi.org/10.1016/0041-008X(80)90007-1.
- Ćirović, A., and Tasić, N. (2023) Accumulation of metal(loid)s in myocardial tissue and the mechanisms underlying their cardiotoxic effects, Med. Podml., 74, 21-25, https://doi.org/10.5937/mp74-46164.
Supplementary files
