The influence of long-term housing in overcrowding on the social behavior of rats and the expression of genes associated with neuroinflammation
- Authors: Pavlova I.V.1, Broshevitskaya N.D.1, Potekhina A.A.1, Shvadchenko A.M.1
-
Affiliations:
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
- Issue: Vol 89, No 9 (2024)
- Pages: 1532-1545
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/676561
- DOI: https://doi.org/10.31857/S0320972524090054
- EDN: https://elibrary.ru/JJWUXS
- ID: 676561
Cite item
Abstract
The effect of long-term housing in overcrowding on the social behavior of adult male Wistar rats was studied. From 30 to 180 postnatal day (PND) the rats lived in standard conditions for 5 individuals (360 cm2 per rat, group of STD), or in crowded conditions for 15 individuals in cages (120 cm2 per rat, group of CROW). Starting from 100 PND, the behavior of rats was studied in social preference test, social dominance tube test and in the resident intruder test for aggressive behavior. After decapitation of rats by 180 PND, brain samples from the amygdala, dorsal hippocampus, ventromedial hypothalamus and medial prefrontal cortex were taken for subsequent analysis of the expression of IL-1β, TNF, TGF-β1, IL-6 mRNA genes using a real-time polymerase chain reaction. Compared with the STD group, rats of CROW group had a shorter interaction time with a social object in the social preference test. Males of the CROW group had more wins in the tube test compared to the STD group, as well as more attacks in the resident intruder test. The expression of IL-1β in the hippocampus and medial prefrontal cortex was significantly increased in the rats of the CROW group, as well as the expression of TGF-β1 in the hippocampus, amygdala and prefrontal cortex was increased. The social stress of overcrowding led to an increase in social dominance, aggressiveness and decreased sociability. Changes in social behavior in the CROW rats were accompanied by an increase in the expression of the proinflammatory cytokine IL-1β and the anti-inflammatory cytokine TGF-β1 in a number of brain structures, which can be considered, respectively, as a manifestation of neuroinflammation and compensatory processes.
Full Text

About the authors
I. V. Pavlova
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Author for correspondence.
Email: pavlovfml@mail.ru
Russian Federation, 117485 Moscow
N. D. Broshevitskaya
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: pavlovfml@mail.ru
Russian Federation, 117485 Moscow
A. A. Potekhina
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: pavlovfml@mail.ru
Russian Federation, 117485 Moscow
A. M. Shvadchenko
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: pavlovfml@mail.ru
Russian Federation, 117485 Moscow
References
- Toth, I., and Neumann, I. D. (2013) Animal models of social avoidance and social fear, Cell Tissue Res., 354, 107-118, https://doi.org/10.1007/s00441-013-1636-4
- Slattery, D. A., Uschold, N., Magoni, M., Bär, J., Popoli, M., Neumann, I. D., and Reber, S. O. (2012) Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression, Psychoneuroendocrinology, 37, 702-714, https://doi.org/10.1016/j.psyneuen.2011.09.002.
- Tramullas, M., Tramullas, M., Dinan, T. G., and Cryan, J. F. (2012) Chronic psychosocial stress induces visceral hyperalgesia in mice, Stress, 15, 281-292, https://doi.org/10.3109/10253890.2011.622816.
- Lee, Y. A., Obora, T., Bondonny, L., Toniolo, A., Mivielle, J., Yamaguchi, Y., Kato, A., Takita, M., and Goto, Y. (2018) The effects of housing density on social interactions and their correlations with serotonin in rodents and primates, Sci. Rep., 8, 3497, https://doi.org/10.1038/s41598-018-21353-6.
- Finger, B. C., Dinan, T. G., and Cryan, J. F. (2012) The temporal impact of chronic intermittent psychosocial stress on high-fat diet-induced alterations in body weight, Psychoneuroendocrinology, 37, 729-741, https://doi.org/10.1016/j.psyneuen.2011.06.01.
- Ramsden, E. (2009) The urban animal: population density and social pathology in rodents and humans, Bulletin of the World Health Organization, 87, 82, https://doi.org/10.2471/blt.09.062836.
- Calhoun, J. B. (1962) Population density and social pathology, Sci. Am., 206, 139-150, https://doi.org/10.1038/scientificamerican0262-139.
- Van Loo, P. L. P., Mol, J. A., Koolhaas, J. M., Van Zutphen, B. F. M., and Baumans, V. (2001) Modulation of aggression in male mice: influence of group size and cage size, Physiol. Behav., 72, 675-683, https://doi.org/10.1016/s0031-9384(01)00425-5.
- Poole, T. B., and Morgan, H. D. (1973) Differences in aggressive behaviour between male mice (Mus musculus L.) in colonies of different sizes, Anim. Behav., 21, 788-795, https://doi.org/10.1016/s0003-3472(73)80105-8.
- Baranyi, J., Bakos, N., and Haller, J. (2005) Social instability in female rats: the relationship between stress-related and anxiety-like consequences, Physiol. Behav., 84, 511-518, https://doi.org/10.1016/j.physbeh.2005.01.005.
- Cao, W. Y., Hu, Z. L., Xu, Y., Zhang, W. J., Huang, F. L., Qiao, X. Q., Cui, Y. H., Wan, W., Wang, X. Q., Liu, D., Dai, R. P., Li, F., and Li, C. Q. (2017) Role of early environmental enrichment on the social dominance tube test at adulthood in the rat, Psychopharmacology (Berl), 234, 3321-3334, https://doi.org/10.1007/s00213-017-4717-3.
- Brown, K. J., and Grunberg, N. E. (1995) Effects of housing on male and female rats: crowding stresses male but calm females, Physiol. Behav., 58, 1085-1089, https://doi.org/10.1016/0031-9384(95)02043-8.
- Smitha, K. K., and Mukkadan, J. K. (2014) Effect of different forms of acute stress in the generation of reactive oxygen species in albino Wistar rats, Indian J. Physiol. Pharmacol., 58, 229-232.
- Delaroque, C., Chervy, M., Gewirtz, A. T., and Chassaing, B. (2021) Social overcrowding impacts gut microbiota, promoting stress, inflammation, and dysglycemia, Gut Microbes, 13, 2000275, https://doi.org/10.1080/19490976. 2021.2000275.
- Uarquin, D. G., Meyer, J. S., Cardenas, F. P., and Rojas, M. J. (2016) Effect of overcrowding on hair corticosterone concentrations in juvenile male Wistar rats, J. Am. Assoc. Lab. Anim. Sci., 55, 749-755.
- Лосева Е. В., Логинова Н. А., Мезенцева М. В., Клодт П. М., Кудрин В. С. (2013) Иммунологические показатели крови и уровни моноаминов в мозге крыс, содержащихся в условиях хронической скученности, Бюлл. экспер. биол. и мед., 155, 464-467.
- Chen, P., and Hong, W. (2018) Neural circuit mechanisms of social behavior, Neuron, 98, 16-30, https://doi.org/10.1016/j.neuron.2018.02.026.
- Hashikawa, Y., Hashikawa, K., Falkner, A. L., and Lin, D. (2017) Ventromedial hypothalamus and the generation of aggression, Front. Systems Neurosci., 11, 94, https://doi.org/10.3389/fnsys.2017.00094.
- Wang, F., Kessels, H. W., and Hu, H. (2014) The mouse that roared: neural mechanisms of social hierarchy, Trends Neurosci., 37, 674-682, https://doi.org/10.1016/j.tins.2014.07.005.
- Gulyaeva, N. V. (2019) Functional neurochemistry of the ventral and dorsal hippocampus: stress, depression, dementia and remote hippocampal damage, Neurochem. Res., 44, 1306-1322, https://doi.org/10.1007/s11064-018-2662-0.
- Fan, Z., Zhu, H., Zhou, T., Wang, S., Wu, Y., and Hu, H. (2019) Using the tube test to measure social hierarchy in mice, Nat. Protoc., 14, 819-831, https://doi.org/10.1038/s41596-018-0116-4.
- Suchomelova, L., Thompson, K. W., Baldwin, R. A., Niquet, J., and Wasterlain, C. G. (2023) Interictal aggression in rats with chronic seizures after an early life episode of status epilepticus, Epilepsia Open, 8, S82-S89, https://doi.org/10.1002/epi4.12734.
- Paxinos, G., and Watson, C. (2005) The Rat Brain in Stereotaxic Coordinates, Elsevier Academic Press, 210 p.
- Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc., 3, 1101-1108, https://doi.org/10.1038/nprot.2008.73.
- Павлова И. В., Брошевицкая Н. Д. (2024) Влияние содержания крыс в условиях повышенной скученности на тревожность и условнорефлекторный страх, Журн. высш. нервн. деят., 74, 421-434, https://doi.org/ 10.31857/S004446772403005X.
- Barker, T. H., George, R. P., Howarth, G. S., Whittaker, A. L. (2017) Assessment of housing density, space allocation and social hierarchy of laboratory rats on behavioural measures of welfare, PLoS One., 12, e0185135, https://doi.org/10.1371/journal.pone.0185135.
- Lin, E. J., Sun, M., Choi, E. Y., Magee, D., Stets, C. W., and During, M. J. (2015) Social overcrowding as a chronic stress model that increases adiposity in mice. Psychoneuroendocrinology, 51, 318-330, https://doi.org/10.1016/ j.psyneuen.2014.10.007.
- Daniels, W. M. U., Pietersen, C. Y., Carstens, M. E., Daya, S., and Stein, D. (2000) Overcrowding induces anxiety and causes loss of serotonin 5HT-1a receptors in rats, Metab. Brain Disease, 15, 287-295, https://doi.org/ 10.1023/a:1011123208674.
- Botelho, S., Estanislau, C., and Morato, S. (2007) Effects of under and overcrowding on exploratory behavior in the elevated plus-maze, Behav. Processes, 74, 357-362, https://doi.org/10.1016/j.beproc.2006.12.006.
- Князева С. И., Логинова Н. А., Лосева Е. В. (2012) Уровень тревожности и изменение массы тела при скученности у крыс, Бюлл. экспер. биол и мед., 154, 7-10.
- Лосева Е. В. (2021) Психосоциальный стресс перенаселенности (скученности): негативные последствия для организма человека и грызунов, Интеграт. Физиол., 2, 33-40, https://doi.org/10.33910/2687-1270-2021-2-1-33-40.
- Лосева Е. В., Саркисова К. Ю., Логинова Н. А., Кудрин В. С. (2015) Депрессивное поведение и содержание моноаминов в структурах мозга у крыс при хронической скученности, Бюл. Эксперим. Биол. Мед., 159, 304-307.
- Yang, C. R., Bai, Y. Y., Ruan, C. S., Zhou, H. F., Liu, D., Wang, X. F., Shen, L. J., Zheng, H. Y., and Zhou, X. F. (2015) Enhanced aggressive behaviour in a mouse model of depression, Neurotox. Res., 27, 129-142, https:// doi.org/10.1007/s12640-014-9498-4.
- Брошевицкая Н. Д., Павлова И. В., Зайченко М. И. (2022) Ранний провоспалительный стресс влияет на социальное поведение взрослых крыс: эффекты пола и базового уровня интерлейкина 1-бета в крови, Нейрохимия, 39, 279-287, https://doi.org/10.31857/S1027813322030025.
- Win-Shwe, T. T., Kyi-Tha-Thu, C., Fujitani, Y., Tsukahara, S., and Hirano, S. (2021) Perinatal exposure to diesel exhaust-origin secondary organic aerosol induces autism-like behavior in rats, Int. J. Mol. Sci., 22, 538, https://doi.org/10.3390/ijms22020538.
- Gadek-Michalska, A., Bugajski, A. J., and Bugajski, J. (2008) Prostaglandins and interleukin-1beta in the hypothalamicpituitary-adrenal response to systemic phenylephrine under basal and stress conditions, J. Physiol. Pharmacol., 59, 563-575.
- Гаврилов В. В., Онуфриев М. В., Моисеева Ю. В., Александров Ю. И., Гуляева Н. В. (2021) Хронические социальные стрессы изоляции и скученности у крыс по-разному влияют на научение инструментальному поведению и состояние гипоталамо-гипофизарно-адренокортикальной системы, Журн. высш. нервн. деят., 71, 710-719, https://doi.org/10.31857/S004446772105004X.
- Павлова И. В., Брошевицкая Н. Д. (2023) Влияние активации иммунной системы в раннем онтогенезе на агрессивность и сексуальную мотивацию у взрослых крыс Вистар, Рос. физиол. журн. им. И.М. Сеченова, 109, 1476-1488, https://doi.org/10.31857/S0869813923100084.
- Butler, R. G. (1980) Population size, social behaviour, and dispersal in house mice: a quantitative investigation, Anim. Behav., 28, 78-85, https://doi.org/10.1016/S0003-3472(80)80010-8.
- Gądek-Michalska, A., Tadeusz, J., Rachwalska, P., and Bugajski, J. (2016) Psychosocial stress inhibits additional stress-induced hyperexpression of NO synthases and IL-1b in brain structures, Pharmacol. Rep., 68, 1178-1196, https://doi.org/10.1016/j.pharep.2016.09.003.
- Pallé, A., Zorzo, C., Luskey, V. E., McGreevy, K. R., Fernández, S., and Trejo, J. L. (2019) Social dominance differentially alters gene expression in the medial prefrontal cortex without affecting adult hippocampal neurogenesis or stress and anxiety-like behavior, FASEB J., 33, 6995-7008, https://doi.org/10.1096/fj.201801600R.
- Zhang, C., Zhu, H., Ni, Z., Xin, Q., Zhou, T., Wu, R., Gao, G., Gao, Z., Ma, H., Li, H., He, M., Zhang, J., Cheng, H., and Hu, H. (2022) Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition, Neuron, 110, 516-531.6, https://doi.org/10.1016/j.neuron.2021.10.034.
- Zhou, T., Zhu, H., Fan, Z., Wang, F., Chen, Y., Liang, H., Yang, Z., Zhang, L., Lin, L., Zhan, Y., Wang, Z., and Hu, H. (2017) History of winning remodels thalamo-PFC circuit to reinforce social dominance, Science, 357, 162-168, https://doi.org/10.1126/science.aak9726.
- Park, M. J., Seo, B. A., Lee, B., Shin, H. S., and Kang, M. G. (2018) Stress-induced changes in social dominance are scaled by AMPA-type glutamate receptor phosphorylation in the medial prefrontal cortex, Sci. Rep., 8, 15008, https://doi.org/10.1038/s41598-018-33410-1.
- Das, S., Deuri, S. K., Sarmah, A., Pathak, K., Baruah, A., Sengupta, S., Mehta, S., Avinash, P. R., Kalita, K. N., and Hazarika, J. (2016) Aggression as an independent entity even in psychosis – the role of inflammatory cytokines, J. Neuroimmunol., 292, 45-51, https://doi.org/10.1016/j.jneuroim.2016.01.012.
- Alperina, E., Idova, G., Zhukova, E., Zhanaeva, S., and Kozhemyakina, R. (2019) Cytokine variations within brain structures in rats selected for differences in aggression, Neurosci. Lett., 692, 193-198, https://doi.org/10.1016/ j.neulet.2018.11.012.
- Idova, G. V., Markova, E. V., Gevorgyan, M. M., Alperina, E. L., and Zhukova, E. N. (2016) Changes in production of cytokines by C57Bl/6J mouse spleen during aggression provoked by social stress, Bull. Experim. Biol. and Med., 160, 679-682, https://doi.org/10.1007/s10517-016-3248-y.
- Audet, M.-C., Mangano, E. N., and Anisman, H. (2010) Behavior and pro-inflammatory cytokine variations among submissive and dominant mice engaged in aggressive encounters: moderation by corticosterone reactivity, Front. Behav. Neurosci., 4, 1-12, https://doi.org/10.3389/fnbeh.2010.00156.
- Takahashi, A., Flanigan, M. E., McEven, B. S., and Russo, S. J. (2018) Aggression, social stress, and the immune system in humans and animal models, Front. Behav. Neurosci., 12, 56-62, https://doi.org/10.3389/fnbeh.2018.00056.
- Hiadlovská, Z., Mikula, O., Macholán, M., Hamplová, P., Vošlajerová, Bímová, B., and Daniszová, K. (2015) Shaking the myth: body mass, aggression, steroid hormones, and social dominance in wild house mouse, Gen. Comp. Endocrinol., 223, 16-26, https://doi.org/10.1016/j.ygcen.2015.09.033.
- Fonberg, E. (1988) Dominance and aggression, Int. J. Neurosci., 41, 201-213, https://doi.org/10.3109/ 00207458808990726.
- Xie, Y., Chen, X., Li, Y., Chen, S., Liu, S., Yu, Z., and Wang, W. (2022) Transforming growth factor-b1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways, J. Neuroinflamm., 19, 194, https://doi.org/10.1186/s12974-022-02557-0.
- Mitchell, K., Shah, J. P., Tsytsikova, L. V., Campbell, A. M., Affram, K., and Symes, A. J. (2014) LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia, J. Neurochem., 129, 155-168, https://doi.org/10.1111/jnc.12612.
- Kapoor, M., and Chinnathambi, S. (2023) TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: a specialized Tau perspective, J. Neuroinflamm., 20:72. https://doi.org/10.1186/s12974-023-02751-8.
- Xin, W., Pan, Y., Wei, W., Gerner, S. T., Huber, S., Juenemann, M., Butz, M., Bähr, M., Huttner, H. B., and Doeppner, T. R. (2023) TGF-β1 decreases microglia-mediated neuroinflammation and lipid droplet accumulation in an in vitro stroke model, Int. J. Mol. Sci., 24, 17329, https://doi.org/10.3390/ijms242417329.
- Su, C., Miao, J., and Guo, J. (2023) The relationship between TGF-b1 and cognitive function in the brain, Brain Res. Bull., 205, 110820, https://doi.org/10.1016/j.brainresbull.2023.110820.
- Fidilio, A., Grasso, M., Caruso, G., Musso, N., Begni, V., Privitera, A., Torrisi, S. A., Campolongo, P., Schiavone, S., Tascedda, F., Leggio, G. M., Drago, F., Riva, M. A., and Caraci, F. (2022) Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway, Front. Pharmacol., 13, 1075746, https://doi.org/10.3389/fphar.2022.1075746.
Supplementary files
