Amino Acid Transport in the Rat Placenta in Methionine-Induced Hyperhomocysteinemia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Maternal hyperhomocysteinemia (HHcy) is a risk factor for the development of intrauterine growth restriction, a proposed mechanism of which is a decrease in transplacental nutrient transport. In this study, we have investigated the effect of experimental HHcy caused by daily methionine administration to pregnant rats on the free amino acid content in the mother and fetal blood. The morphological and biochemical parameters on which amino acid transport through the placenta depends have also been studied. Under the influence of HHcy on the 20th day of pregnancy, an increase in the levels of most free amino acids was observed in the mother blood, while some amino acid concentrations in the fetal blood were decreased. Under conditions of HHcy in the placental labyrinth, which is an exchange site between mother and fetal circulations, the maternal sinusoids narrowed, being accompanied by blood stagnation and red blood cell aggregation. In the labyrinth zone, we also observed an increase in the protein level of neutral amino acid transporters (LAT1, SNAT2) and an activation of the downstream effector of the mTORC1 complex, 4E-BP1, which is a positive regulator of the placental transporter expression. Maternal HHcy caused an increase in the placental barrier permeability, as evidenced by an intensification in the mother to fetus transfer of the Evans blue dye. The imbalance of the free amino acid levels in the mother and fetal blood under conditions of HHcy may be due to the competition of homocysteine with other amino acids for their common transporters, as well as a decreased exchange zone area and reduced blood flow in the placental labyrinth. An increase in the amino acid transporter expression in the labyrinth zone may be a compensatory response to an insufficient intrauterine amino acid supply and a fetal growth decrease.

Full Text

Restricted Access

About the authors

Yu. P. Milyutina

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Author for correspondence.
Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

G. O. Kerkeshko

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

D. S. Vasilyev

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine; I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg; 194223, Saint Petersburg

N. L. Tumanova

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: milyutina1010@mail.ru
Russian Federation, 194223, Saint Petersburg

I. V. Zaloznyaya

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

S. K. Bochkovsky

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

A. D. Shcherbitskaya

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

A. V. Mikhel

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

G. H. Tolibova

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

A. V. Arutyunyan

D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine

Email: milyutina1010@mail.ru
Russian Federation, 199034, Saint Petersburg

References

  1. Dai, C., Fei, Y., Li, J., Shi, Y., and Yang, X. (2021) A novel review of homocysteine and pregnancy complications, Biomed Res. Int., 2021, 6652231, https://doi.org/10.1155/2021/6652231.
  2. Gaiday, A., Balash, L., and Tussupkaliyev, A. (2022) The role of high concentrations of homocysteine for the development of fetal growth restriction, Rev. Bras. Ginecol. Obstet., 44, 352-359, https://doi.org/10.1055/ s-0042-1743093.
  3. Memon, S.I., Acharya, N. S., Acharya, S., Potdar, J., Karnik, M., and Mohammad, S. (2023) Maternal hyperhomocysteinemia as a predictor of placenta-mediated pregnancy complications: a two-year novel study, Cureus, 15, e37461, https://doi.org/10.7759/cureus.37461.
  4. Gaccioli, F., Lager, S., Powell, T. L., and Jansson, T. (2013) Placental transport in response to altered maternal nutrition, J. Dev. Orig. Health Dis., 4, 101-115, https://doi.org/10.1017/S2040174412000529.
  5. Dong, J., Shin, N., Chen, S., Lei, J., Burd, I., and Wang, X. (2020) Is there a definite relationship between placental mTOR signaling and fetal growth? Biol. Reprod., 103, 471-486, https://doi.org/10.1093/biolre/ioaa070.
  6. Jansson, T., Aye, I. L., and Goberdhan, D. C. (2012) The emerging role of mTORC1 signaling in placental nutrient-sensing, Placenta, 33 Suppl 2, e23-9, https://doi.org/10.1016/j.placenta.2012.05.010.
  7. Chassen, S., and Jansson, T. (2020) Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR, Biochim. Biophys. Acta Mol. Basis Dis., 1866, 165373, https://doi.org/10.1016/ j.bbadis.2018.12.024.
  8. Kramer, A. C., Jansson, T., Bale, T. L., and Powell, T. L. (2023) Maternal-fetal cross-talk via the placenta: influence on offspring development and metabolism, Development, 150, dev202088, https://doi.org/10.1242/dev.202088.
  9. Sibley, C. P., Brownbill, P., Dilworth, M., and Glazier, J. D. (2010) Review: adaptation in placental nutrient supply to meet fetal growth demand: implications for programming, Placenta, 31, S70-S74, https://doi.org/10.1016/ j.placenta.2009.12.020.
  10. Lewis, R. M., Brooks, S., Crocker, I. P., Glazier, J., Hanson, M. A., Johnstone, E. D., Panitchob, N., Please, C. P., Sibley, C. P., Widdows, K. L., and Sengers, B. G. (2013) Review: modelling placental amino acid transfer – from transporters to placental function, Placenta, 34 Suppl, S46-S51, https://doi.org/10.1016/j.placenta.2012.10.010.
  11. Rosario, F. J., Dimasuay, K. G., Kanai, Y., Powell, T. L., and Jansson, T. (2016) Regulation of amino acid transporter trafficking by mTORC1 in primary human trophoblast cells is mediated by the ubiquitin ligase Nedd4-2, Clin. Sci. (Lond), 130, 499-512, https://doi.org/10.1042/CS20150554.
  12. Matsueda, S., and Niiyama, Y. (1982) The effects of excess amino acids on maintenance of pregnancy and fetal growth in rats, J. Nutr. Sci. Vitaminol. (Tokyo), 28, 557-573, https://doi.org/10.3177/jnsv.28.557.
  13. Mori, M., Yamashita, Y., Hiroi, Y., Shinjo, S., Asato, R., Hirai, K., Suzuki, K., and Yamamoto, S. (1999) Effect of single essential amino acid excess during pregnancy on dietary nitrogen utilization and fetal growth in rats, Asia Pac. J. Clin. Nutr., 8, 251-257, https://doi.org/10.1046/j.1440-6047.1999.00094.x.
  14. Akahoshi, N., Kamata, S., Kubota, M., Hishiki, T., Nagahata, Y., Matsuura, T., Yamazaki, C., Yoshida, Y., Yamada, H., Ishizaki, Y., Suematsu, M., Kasahara, T., and Ishii, I. (2014) Neutral aminoaciduria in cystathionine beta-synthase-deficient mice; an animal model of homocystinuria, Am. J. Physiol. Renal. Physiol., 306, F1462-F1476, https://doi.org/10.1152/ajprenal.00623.2013.
  15. Akahoshi, N., Yokoyama, A., Nagata, T., Miura, A., Kamata, S., and Ishii, I. (2019) Abnormal amino acid profiles of blood and cerebrospinal fluid from cystathionine beta-synthase-deficient mice, an animal model of homocystinuria, Biol. Pharm. Bull., 42, 1054-1057, https://doi.org/10.1248/bpb.b19-00127.
  16. Ishii, I., Kamata, S., Ito, S., Shimonaga, A., Koizumi, M., Tsushima, M., Miura, A., Nagata, T., Tosaka, Y., Ohtani, H., Kamichatani, W., and Akahoshi, N. (2022) A high-methionine diet for one-week induces a high accumulation of methionine in the cerebrospinal fluid and confers bipolar disorder-like behavior in mice, Int. J. Mol. Sci., 23, 928, https://doi.org/10.3390/ijms23020928.
  17. Tsitsiou, E., Sibley, C. P., D’Souza, S. W., Catanescu, O., Jacobsen, D. W., and Glazier, J. D. (2011) Homocysteine is transported by the microvillous plasma membrane of human placenta, J. Inherit. Metab. Dis., 34, 57-65, https://doi.org/10.1007/s10545-010-9141-3.
  18. Tsitsiou, E., Sibley, C. P., D’Souza, S. W., Catanescu, O., Jacobsen, D. W., and Glazier, J. D. (2009) Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta, J. Physiol., 587, 4001-4013, https://doi.org/10.1113/jphysiol.2009.173393.
  19. Tripathi, M., Zhang, C. W., Singh, B. K., Sinha, R. A., Moe, K. T., DeSilva, D. A., and Yen, P. M. (2016) Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation, Cell Death Dis., 7, e2513, https://doi.org/10.1038/cddis.2016.374.
  20. Witucki, L., and Jakubowski, H. (2023) Homocysteine metabolites inhibit autophagy, elevate amyloid beta, and induce neuropathy by impairing Phf8/H4K20me1-dependent epigenetic regulation of mTOR in cystathionine beta-synthase-deficient mice, J. Inherit. Metab. Dis., 46, 1114-1130, https://doi.org/10.1002/jimd.12661.
  21. Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., and Dobrowolski, R. (2017) The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice, FASEB J., 31, 598-609, https://doi.org/10.1096/fj.201600915R.
  22. Wang, M., Liang, X., Cheng, M., Yang, L., Liu, H., Wang, X., Sai, N., and Zhang, X. (2019) Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke, Cell Death Dis., 10, 561, https:// doi.org/10.1038/s41419-019-1798-4.
  23. Zhao, Y., Huang, G., Chen, S., Gou, Y., Dong, Z., and Zhang, X. (2016) Homocysteine aggravates cortical neural cell injury through neuronal autophagy overactivation following rat cerebral ischemia-reperfusion, Int. J. Mol. Sci., 17, 1196, https://doi.org/10.3390/ijms17081196.
  24. Kitada, M., Xu, J., Ogura, Y., Monno, I., and Koya, D. (2020) Mechanism of activation of mechanistic target of rapamycin complex 1 by methionine, Front. Cell Dev. Biol., 8, 715, https://doi.org/10.3389/fcell.2020.00715.
  25. Ouyang, Y., Wu, Q., Li, J., Sun, S., and Sun, S. (2020) S-adenosylmethionine: a metabolite critical to the regulation of autophagy, Cell Prolif., 53, e12891, https://doi.org/10.1111/cpr.12891.
  26. Rosario, F. J., Powell, T. L., and Jansson, T. (2017) mTOR folate sensing links folate availability to trophoblast cell function, J. Physiol., 595, 4189-4206, https://doi.org/10.1113/JP272424.
  27. Chen, Q., Dai, W., Sun, Y., Zhao, F., Liu, J., and Liu, H. (2018) Methionine partially replaced by methionyl-methionine dipeptide improves reproductive performance over methionine alone in methionine-deficient mice, Nutrients, 10, 1190, https://doi.org/10.3390/nu10091190.
  28. Batistel, F., Alharthi, A. S., Wang, L., Parys, C., Pan, Y. X., Cardoso, F. C., and Loor, J. J. (2017) Placentome nutrient transporters and mammalian target of rapamycin signaling proteins are altered by the methionine supply during late gestation in dairy cows and are associated with newborn birth weight, J. Nutr., 147, 1640-1647, https://doi.org/10.3945/jn.117.251876.
  29. Arutjunyan, A. V., Milyutina, Y. P., Shcherbitskaia, A. D., Kerkeshko, G. O., Zalozniaia, I. V., and Mikhel, A. V. (2020) Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia, Biochemistry (Moscow), 85, 248-259, https://doi.org/10.1134/S000629792002008X.
  30. Arutjunyan, A. V., Kerkeshko, G. O., Milyutina, Y. P., Shcherbitskaia, A. D., Zalozniaia, I. V., Mikhel, A. V., Inozemtseva, D. B., Vasilev, D. S., Kovalenko, A. A., and Kogan, I. Y. (2023) Imbalance of angiogenic and growth factors in placenta in maternal hyperhomocysteinemia, Biochemistry (Moscow), 88, 262-279, https:// doi.org/10.1134/S0006297923020098.
  31. Аскретков А. Д., Клишин А. А., Зыбин Д. И., Орлова Н. В., Холодова А. В., Лобанова Н. В., Серегин Ю. А. (2020) Определение двадцати протеиногенных аминокислот и добавок в культуральной жидкости методом высокоэффективной жидкостной хроматографии, Журнал аналитической химии, 75, 721-729, https://doi.org/10.31857/S0044450220080034.
  32. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1006/ abio.1976.9999.
  33. Bass, J. J., Wilkinson, D. J., Rankin, D., Phillips, B. E., Szewczyk, N. J., Smith, K., and Atherton, P. J. (2017) An overview of technical considerations for Western blotting applications to physiological research, Scand. J. Med. Sci. Sports, 27, 4-25, https://doi.org/10.1111/sms.12702.
  34. Shcherbitskaia, A. D., Vasilev, D. S., Milyutina, Y. P., Tumanova, N. L., Mikhel, A. V., Zalozniaia, I. V., and Arutjunyan, A. V. (2021) Prenatal hyperhomocysteinemia induces glial activation and alters neuroinflammatory marker expression in infant rat hippocampus, Cells, 10, 1536, https://doi.org/10.3390/cells10061536.
  35. Shcherbitskaia, A. D., Vasilev, D. S., Milyutina, Y. P., Tumanova, N. L., Zalozniaia, I. V., Kerkeshko, G. O., and Arutjunyan, A. V. (2020) Maternal hyperhomocysteinemia induces neuroinflammation and neuronal death in the rat offspring cortex, Neurotox. Res., 38, 408-420, https://doi.org/10.1007/s12640-020-00233-w.
  36. Wang, H. L., and Lai, T. W. (2014) Optimization of Evans blue quantitation in limited rat tissue samples, Sci. Rep., 4, 6588, https://doi.org/10.1038/srep06588.
  37. Wick, M. J., Harral, J. W., Loomis, Z. L., and Dempsey, E. C. (2018) An optimized Evans blue protocol to assess vascular leak in the mouse, J. Vis. Exp., 139, 57037, https://doi.org/10.3791/57037.
  38. Dayal, S., and Lentz, S. R. (2008) Murine models of hyperhomocysteinemia and their vascular phenotypes, Arterioscler. Thromb Vasc. Biol., 28, 1596-1605, https://doi.org/10.1161/ATVBAHA.108.166421.
  39. Nieraad, H., Pannwitz, N., Bruin, N., Geisslinger, G., and Till, U. (2021) Hyperhomocysteinemia: metabolic role and animal studies with a focus on cognitive performance and decline – a review, Biomolecules, 11, 1546, https://doi.org/10.3390/biom11101546.
  40. Sauls, D. L., Arnold, E. K., Bell, C. W., Allen, J. C., and Hoffman, M. (2007) Pro-thrombotic and pro-oxidant effects of diet-induced hyperhomocysteinemia, Thrombosis Res., 120, 117-126, https://doi.org/10.1016/j.thromres. 2006.08.001.
  41. Ditscheid, B., Funfstuck, R., Busch, M., Schubert, R., Gerth, J., and Jahreis, G. (2005) Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study, Eur. J. Clin. Nutr., 59, 768-775, https://doi.org/10.1038/sj.ejcn.1602138.
  42. Andersson, A., Brattstrom, L., Israelsson, B., Isaksson, A., and Hultberg, B. (1990) The effect of excess daily methionine intake on plasma homocysteine after a methionine loading test in humans, Clin. Chim. Acta, 192, 69-76, https://doi.org/10.1016/0009-8981(90)90273-u.
  43. Benevenga, N. J., and Steele, R. D. (1984) Adverse effects of excessive consumption of amino acids, Annu. Rev. Nutr., 4, 157-181, https://doi.org/10.1146/annurev.nu.04.070184.001105.
  44. Terstappen, F., Tol, A. J. C., Gremmels, H., Wever, K. E., Paauw, N. D., Joles, J. A., Beek, E. M. V., and Lely, A. T. (2020) Prenatal amino acid supplementation to improve fetal growth: a systematic review and meta-analysis, Nutrients, 12, 2535, https://doi.org/10.3390/nu12092535.
  45. Stanescu, S., Belanger-Quintana, A., Fernandez-Felix, B. M., Ruiz-Sala, P., Del Valle, M., Garcia, F., Arrieta, F., and Martinez-Pardo, M. (2022) Interorgan amino acid interchange in propionic acidemia: the missing key to understanding its physiopathology, Amino Acids, 54, 777-786, https://doi.org/10.1007/s00726-022-03128-6.
  46. Benevenga, N. J. (1974) Toxicities of methionine and other amino acids, J. Agric. Food Chem., 22, 2-9, https:// doi.org/10.1021/jf60191a036.
  47. Cleal, J. K., Lofthouse, E. M., Sengers, B. G., and Lewis, R. M. (2018) A systems perspective on placental amino acid transport, J. Physiol., 596, 5511-5522, https://doi.org/10.1113/JP274883.
  48. McIntyre, K. R., Hayward, C. E., Sibley, C. P., Greenwood, S. L., and Dilworth, M. R. (2019) Evidence of adaptation of maternofetal transport of glutamine relative to placental size in normal mice, and in those with fetal growth restriction, J. Physiol., 597, 4975-4990, https://doi.org/10.1113/JP278226.
  49. Hussain, T., Tan, B., Murtaza, G., Metwally, E., Yang, H., Kalhoro, M. S., Kalhoro, D. H., Chughtai, M. I., and Yin, Y. (2020) Role of dietary amino acids and nutrient sensing system in pregnancy associated disorders, Front. Pharmacol., 11, 586979, https://doi.org/10.3389/fphar.2020.586979.
  50. Huang, H., Vandekeere, S., Kalucka, J., Bierhansl, L., Zecchin, A., Bruning, U., Visnagri, A., Yuldasheva, N., Goveia, J., Cruys, B., Brepoels, K., Wyns, S., Rayport, S., Ghesquiere, B., Vinckier, S., Schoonjans, L., Cubbon, R., Dewerchin, M., Eelen, G., and Carmeliet, P. (2017) Role of glutamine and interlinked asparagine metabolism in vessel formation, EMBO J., 36, 2334-2352, https://doi.org/10.15252/embj.201695518.
  51. Bonnin, A., Goeden, N., Chen, K., Wilson, M. L., King, J., Shih, J. C., Blakely, R. D., Deneris, E. S., and Levitt, P. (2011) A transient placental source of serotonin for the fetal forebrain, Nature, 472, 347-350, https://doi.org/10.1038/nature09972.
  52. Bonnin, A., and Levitt, P. (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain, Neuroscience, 197, 1-7, https://doi.org/10.1016/j.neuroscience. 2011.10.005.
  53. Mao, J., Jain, A., Denslow, N. D., Nouri, M. Z., Chen, S., Wang, T., Zhu, N., Koh, J., Sarma, S. J., Sumner, B. W., Lei, Z., Sumner, L. W., Bivens, N. J., Roberts, R. M., Tuteja, G., and Rosenfeld, C. S. (2020) Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis, Proc. Natl. Acad. Sci. USA, 117, 4642-4652, https://doi.org/10.1073/pnas.1919563117.
  54. Woods, L., Perez-Garcia, V., and Hemberger, M. (2018) Regulation of placental development and its impact on fetal growth-new insights from mouse models, Front. Endocrinol. (Lausanne), 9, 570, https://doi.org/10.3389/fendo.2018.00570.
  55. Baskurt, O. K., and Meiselman, H. J. (2012) Iatrogenic hyperviscosity and thrombosis, Semin. Thromb. Hemost., 38, 854-864, https://doi.org/10.1055/s-0032-1325616.
  56. Winterhager, E., and Gellhaus, A. (2017) Transplacental nutrient transport mechanisms of intrauterine growth restriction in rodent models and humans, Front. Physiol., 8, 951, https://doi.org/10.3389/fphys.2017.00951.
  57. Rosario, F. J., Kanai, Y., Powell, T. L., and Jansson, T. (2015) Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth, Obesity (Silver Spring), 23, 1663-1670, https:// doi.org/10.1002/oby.21165.
  58. Aye, I. L., Rosario, F. J., Powell, T. L., and Jansson, T. (2015) Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth, Proc. Natl. Acad. Sci. USA, 112, 12858-12863, https://doi.org/10.1073/pnas.1515484112.
  59. Huang, Z., Huang, S., Song, T., Yin, Y., and Tan, C. (2021) Placental angiogenesis in mammals: a review of the regulatory effects of signaling pathways and functional nutrients, Adv. Nutr., 12, 2415-2434, https://doi.org/10.1093/advances/nmab070.
  60. Yung, H. W., Hemberger, M., Watson, E. D., Senner, C. E., Jones, C. P., Kaufman, R. J., Charnock-Jones, D. S., and Burton, G. J. (2012) Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction, J. Pathol., 228, 554-564, https://doi.org/10.1002/path.4068.
  61. Cross, J. C., Hemberger, M., Lu, Y., Nozaki, T., Whiteley, K., Masutani, M., and Adamson, S. L. (2002) Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta, Mol. Cell Endocrinol., 187, 207-212, https://doi.org/10.1016/s0303-7207(01)00703-1.
  62. Wang, Y., Engel, T., and Teng, X. (2024) Post-translational regulation of the mTORC1 pathway: a switch that regulates metabolism-related gene expression, Biochim. Biophys. Acta Gene Regul. Mech., 1867, 195005, https://doi.org/10.1016/j.bbagrm.2024.195005.
  63. Kavitha, J. V., Rosario, F. J., Nijland, M. J., McDonald, T. J., Wu, G., Kanai, Y., Powell, T. L., Nathanielsz, P. W., and Jansson, T. (2014) Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon, FASEB J., 28, 1294-1305, https://doi.org/10.1096/ fj.13-242271.
  64. Qin, X., Jiang, B., and Zhang, Y. (2016) 4E-BP1, a multifactor regulated multifunctional protein, Cell Cycle, 15, 781-786, https://doi.org/10.1080/15384101.2016.1151581.
  65. Pang, V., Bates, D. O., and Leach, L. (2017) Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A(165)a, VEGF-A(165)b, PIGF and VE-cadherin, Clin. Sci. (Lond), 131, 2763-2775, https://doi.org/10.1042/CS20171252.
  66. Saunders, N. R., Dziegielewska, K. M., Mollgard, K., and Habgood, M. D. (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front. Neurosci., 9, 385, https://doi.org/10.3389/fnins.2015.00385.
  67. Haghighi Poodeh, S., Salonurmi, T., Nagy, I., Koivunen, P., Vuoristo, J., Rasanen, J., Sormunen, R., Vainio, S., and Savolainen, M. J. (2012) Alcohol-induced premature permeability in mouse placenta-yolk sac barriers in vivo, Placenta, 33, 866-873, https://doi.org/10.1016/j.placenta.2012.07.008.
  68. Lewis, R. M., Baskaran, H., Green, J., Tashev, S., Palaiologou, E., Lofthouse, E. M., Cleal, J. K., Page, A., Chatelet, D. S., Goggin, P., and Sengers, B. G. (2022) 3D visualization of trans-syncytial nanopores provides a pathway for paracellular diffusion across the human placental syncytiotrophoblast, iScience, 25, 105453, https:// doi.org/10.1016/j.isci.2022.105453.
  69. Sibley, C. P., Brownbill, P., Glazier, J. D., and Greenwood, S. L. (2018) Knowledge needed about the exchange physiology of the placenta, Placenta, 64, S9-S15, https://doi.org/10.1016/j.placenta.2018.01.006.
  70. Shao, X., Cao, G., Chen, D., Liu, J., Yu, B., Liu, M., Li, Y. X., Cao, B., Sadovsky, Y., and Wang, Y. L. (2021) Placental trophoblast syncytialization potentiates macropinocytosis via mTOR signaling to adapt to reduced amino acid supply, Proc. Natl. Acad. Sci. USA, 118, https://doi.org/10.1073/pnas.2017092118.
  71. Cooke, L. D. F., Tumbarello, D. A., Harvey, N. C., Sethi, J. K., Lewis, R. M., and Cleal, J. K. (2021) Endocytosis in the placenta: an undervalued mediator of placental transfer, Placenta, 113, 67-73, https://doi.org/10.1016/ j.placenta.2021.04.014.
  72. Elshorbagy, A. K., Graham, I., and Refsum, H. (2020) Body mass index determines the response of plasma sulfur amino acids to methionine loading, Biochimie, 173, 107-113, https://doi.org/10.1016/j.biochi.2020.03.001.
  73. Lofthouse, E. M., Manousopoulou, A., Cleal, J. K., O’Kelly, I. M., Poore, K. R., Garbis, S. D., and Lewis, R. M. (2021) N-acetylcysteine, xCT and suppression of Maxi-chloride channel activity in human placenta, Placenta, 110, 46-55, https://doi.org/10.1016/j.placenta.2021.05.009.
  74. Da Silva, V. C., Fernandes, L., Haseyama, E. J., Agamme, A. L., Guerra Shinohara, E. M., Muniz, M. T., and D’Almeida, V. (2014) Effect of vitamin B deprivation during pregnancy and lactation on homocysteine metabolism and related metabolites in brain and plasma of mice offspring, PLoS One, 9, e92683, https://doi.org/10.1371/journal.pone.0092683.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes under the influence of maternal hyperhomocysteinemia (HHC) in the content of free amino acids (AAs) in the serum of pregnant rats (Mother HHC) and their fetuses (Fetus HHC), as well as the ratio of the level of AAs in the blood of the fetus to that in the blood of the mother (Fetus/Mother HHC) on day 20 of gestation. a - Indispensable AAs; b - Substitutable AAs. Changes are expressed as percentage relative to the level in the control group; data are presented as Me (Q1; Q3); n = 11 females in the control group, n = 10 females in the HGC group; * p < 0.05, ** p < 0.01, *** p < 0.001 compared to control; t-test or Mann-Whitney U-test

Download (381KB)
3. Fig. 2. Effect of experimental hyperhomocysteinemia on the content of amino acid transporters in the labyrinthine region of rat placenta on day 20 of gestation. Content (a) and representative immunoblot (b) of SNAT1, SNAT2, LAT1, LAT2 proteins in the fetal part of rat placenta in control and under the influence of maternal hyperhomocysteinemia (HHC); ordinate axis - intensity of bands obtained by immunoblotting expressed in conventional units; data are presented as M ± SEM; n = 4-8 females in each group; * p < 0.05, Mann-Whitney U-test; ** p < 0.01, Student t-test

Download (111KB)
4. Fig. 3. Effect of maternal hyperhomocysteinemia (HHC) on the activity of mTOR kinase and downstream components of the mTORC1 signalling system in rat placenta at day 20 of gestation. Content and representative immunoblot of mTOR, 4E-BP1 and S6 proteins and their phosphorylated forms p-mTORSer2448, p-4E-BP1Thr37/46 and p-S6Ser235/236 in the maternal (MMP) (a and b) and fetal part (FPP) (c and d) of rat placenta in control and under the influence of maternal HGC; ordinate axis - intensity of bands obtained by immunoblotting expressed in conventional units; data are presented as M ± SEM; n = 10 females in each group; ** p < 0.05, Welch's t-test; *** p < 0.001, Student's t-test

Download (373KB)
5. Fig. 4. Morphological changes in the rat placenta on day 20 of gestation under the influence of maternal hyperhomocysteinemia (HHC). a, b - Labyrinthine area of the placenta with trophoblast beams (BTB) and maternal sinusoids (MS) in the control (a) and experimental (b) groups. The areas of BTB and erythrocyte aggregates (AEs) whose area was quantitatively analysed are indicated in endnotes; haematoxylin-eosin staining, ×200. c - Relative area (S%) of BTB from the total area of the labyrinthine region. d-e - Electronograms of placental tissue of control (d) and experimental (e and f) groups; mb - maternal blood (maternal sinusoid), fc - fetal capillary vessel, er - erythrocytes in the vessel lumen, panels e and f show aggregates of erythrocytes filling the vessel lumen, en - endothelial cells of the fetal capillary wall. g - Area of AEs in the labyrinthine region of the placenta. h, i - Giant trophoblast cells (GTC) in the control group (h) and HGC group (i); hematoxylin-eosin staining, ×400; arrows indicate GTC nuclei; k - relative area (S%) of GTC nuclei from the total area of the GTC layer. l - Thickness of the labyrinthine region (LR) and basal area (BA) of the placenta. m - Ratio of BA thickness to LR thickness. In all graphs, data are presented as M ± SEM. For panels c and k: n = 3 placentas from 3 females in the control group, n = 14 placentas from 4 females in the HGC group; w, l and m: n = 9 placentas from 5 females in the control group, n = 18 placentas from 6 females in the HGC group; ** p < 0.01, Student's t-test

Download (774KB)
6. Fig. 5. Effect of maternal hyperhomocysteinaemia (HHC) on the ultrastructure of the placental barrier and permeability of the rat placenta on day 20 of gestation. a-c - Electronograms of the exchange zone between maternal and fetal blood systems in the labial region; mb - maternal blood (maternal sinusoid), fc - fetal capillary vessel; layers of the placental barrier: I - cytotrophoblast layer in contact with maternal blood, II and III - two layers of syncytiotrophoblast, bm - basal membrane lining the endothelial cell layer (en) of the fetal capillary wall, er - erythrocyte in the vessel lumen, arrow - tight contact between endothelial cells, arrowhead - fenestra of the fetal capillary endothelium. d - Fluorescence intensity level of Evans blue dye in tissues of abdominal cavity organs (ACO) and fetal brain 3 h after its administration to female rats; n = 12 placentas from 2 females in the control group, n = 15 placentas from 2 females in the HGC group; *** p < 0.001, Welch's t-test

Download (238KB)

Copyright (c) 2024 Russian Academy of Sciences