Anomalous temperature dependence of the triplet-triplet energy transfer in Cereibacter sphaeroides I(L177)H mutant reaction centers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of singlet-excited oxygen generation, the potent chemical oxidant. This process in the Cereibacter sphaeroides reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine for hystidine at the 177 position of the L-subunit results in a sharp decrease of the activation energy, so the carotenoid triplets are populated even at 10 K. Activation energy of the T-T energy transfer was estimated as 7.5 cm−1, which is more than 10-fold lower than the activation energy of the original reaction centers. At certain temperatures the energy transfer in the mutant is decelerated, which is related to the increase of the effective distance of the triplet-triplet transfer. To our knowledge, the described mutation presents the first reaction center modification leading to a significant decrease in activation energy of T-T energy transfer to the carotenoid molecule. The I(L177)H mutant reaction centers present a considerable interest for further studies of the triplet state quenching mechanisms, and of other photophysical and photochemical processes in reaction centers of bacterial photosynthesis.

Full Text

Restricted Access

About the authors

T. Y. Fufina

Institute of Basic Biological Problems, Russian Academy of Sciences

Author for correspondence.
Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region

L. G. Vasilieva

Institute of Basic Biological Problems, Russian Academy of Sciences

Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region

I. B. Klenina

Institute of Basic Biological Problems, Russian Academy of Sciences

Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region

I. I. Proskuryakov

Institute of Basic Biological Problems, Russian Academy of Sciences

Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region

References

  1. Di Mascio, P., Martinez, G. R., Miyamoto, S., Ronsein, G. E., Medeiros, M. H. G., and Cadet, J. (2019), Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins, Chem. Rev., 119, 2043-2086, https://doi.org/ 10.1021/acs.chemrev.8b00554.
  2. Yeates, T. O., Komiya, H., Chirino, A., Rees, D. C., Allen, J. P., and Feher, G. (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions, Proc. Natl. Acad. Sci. USA, 85, 7993-7997, https://doi.org/10.1073/pnas.85.21.7993.
  3. Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions, Structure, 2, 925-936, https://doi.org/10.1016/S0969-2126(94)00094-8.
  4. Hoff, A. J., and Deisenhofer, J. (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria, Phys. Rep., 287, 1-247, https://doi.org/10.106/S0370-1573(97)00004-5.
  5. Blankenship, R. E. (2021) Molecular Mechanisms of Photosynthesis, 3rd ed., John Wiley & Sons, Inc., Chichester, UK.
  6. Parson, W. W., and Monger, T. G. (1976) Interrelationships among excited states in bacterial reaction centers, Brookhaven Symp. Biol., 28, 195-212.
  7. Schenck, C. C., Mathis, P., and Lutz, M. (1984) Triplet formation and triplet decay in reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides, Photochem. Photobiol., 39, 407-417, https:// doi.org/10.1111/j.1751-1097.1984.tb08198.x.
  8. Frank, H. A., Chynwat, V., Hartwich, G., Meyer, M., Katheder, I., and Scheer, H. (1993) Carotenoid triplet state formation in Rhodobacter sphaeroides R-26 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene, Photosyth. Res., 37, 193-203, https://doi.org/10.1007/ BF00032823.
  9. Frank, H. A., Innes, J., Aldema, M., Neumann, R., and Schenck, C. C. (1993) Triplet state EPR of reaction centers from the HisL173 → Leu173 mutant of Rhodobacter sphaeroides which contains a heterodimer primary donor, Photosyth. Res., 38, 99-109, https://doi.org/10.1007/BF00015066.
  10. Frank, H. A., Chynwat, V., Posteraro, A., Hartwich, G., Simonin, I., and Scheer, H. (1996) Triplet state energy transfer between the primary donor and the carotenoid in Rhodobacter sphaeroides R-26.1 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene, Photochem. Photobiol., 64, 823-883, https://doi.org/10.1111/j.1751-1097.1996.tb01842.x.
  11. Angerhofer, A., Bornhaüser, F., Aust, V., Hartwich, G., and Scheer, H. (1998) Triplet energy transfer in bacterial photosynthetic reaction centres, Biochim. Biophys. Acta, 1365, 404-420, https://doi.org/10.1016/S0005-2728(98)00093-0.
  12. Laible, P. D., Chynwat, V., Thurnauer, M. C., Schiffer, M., Hanson, D. K., and Frank, H. A. (1998) Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers, Biophys. J., 74, 2623-2637, https://doi.org/10.1016/S0006-3495(98)77968-8.
  13. De Winter, A., and Boxer, S. G. (1999) The mechanism of triplet energy transfer from the special pair to the carotenoid in bacterial photosynthetic reaction centers, J. Phys. Chem. B, 103, 8786-8789, https://doi.org/10.1021/jp992259d.
  14. Laible, P. D., Morris, Z. S., Thurnauer, M. C., Schiffer, M., and Hanson, D. K. (2003) Inter- and intraspecific variation in excited-state triplet energy transfer rates in reaction centers of photosynthetic bacteria, Photochem. Photobiol., 78, 114-123, https://doi.org/10.1562/0031-8655(2003)0780114IAIVIE2.0.CO2.
  15. Mandal, S., Carey, A.-M., Locsin, J., Gao, B.-R., Williams, J. C., Allen, J. P., Lin, S., and Woodbury, N. W. (2017) Mechanism of triplet energy transfer in photosynthetic bacterial reaction centers, J. Phys. Chem. B, 121, 6499-6510, https://doi.org/10.1021/acs.jpcb.7b03373.
  16. Mandal, S., Espiritu, E., Akram, N., Lin, S., Williams, J. C., Allen, J. P., and Woodbury, N. W. (2018) Influence of the electrochemical properties of the bacteriochlorophyll dimer on triplet energy-transfer dynamics in bacterial reaction centers, J. Phys. Chem. B, 122, 10097-10107, https://doi.org/10.1021/acs.jpcb.8b07985.
  17. Dexter, D. L. (1953) A theory of sensitized luminescence in solids, J. Chem Phys., 21, 836-850, https://doi.org/ 10.1063/1.1699044.
  18. You, Z.-Q., Hsu, C.-P., and Fleming, G. R. (2006) Triplet-triplet energy-transfer coupling: theory and calculation, J. Chem. Phys., 124, https://doi.org/10.1063/1.2155433.
  19. Хатыпов Р. А., Васильева Л. Г., Фуфина Т. Ю., Болгарина Т. И., Шувалов В. А. (2005) Влияние замещения изолейцина L177 гистидином на пигментный состав и свойства реакционных центров пурпурной бактерии Rhodobacter sphaeroides, Биохимия, 70, 1527-1533, https://doi.org/10.1007/s10541-005-0256-3.
  20. Cohen-Basire, G., Sistrom, W. R., and Stanier, R. Y. (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell Comp. Physiol., 49, 25-68, https://doi.org/10.1002/jcp.1030490104.
  21. Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Ya., and Shuvalov, V. A. (2007) Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit, FEBS Lett., 581, 5769-5773, https://doi.org/10.1016/j.febslet. 2007.11.032.
  22. Fufina, T. Y., Selikhanov, G. K., Gabdulkhakov, A. G., and Vasilieva, L. G. (2023) Properties and crystal structure of the Cereibacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H + F(M197)H, Membranes, 13, 157, https://doi.org/10.3390/membranes13020157.
  23. Фуфина Т. Ю., Васильева Л. Г. (2021) Влияние детергентов и осмолитов на термостабильность нативных и мутантных реакционных центров Rhodobacter sphaeroides, Биохимия, 86, 607-614, https://doi.org/ 10.31857/S0320972521040126.
  24. Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Leonova, M. M., Khatypov, R. A., and Shuvalov, V. A. (2012), The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of PA and BB bacteriochlorophylls, Biochim. Biophys. Acta, 1817, 1407-1417, https://doi.org/10.1016/j.bbabio. 2012.02.008.
  25. Budil, D. E., and Thurnauer, M. C. (1991), The chlorophyll triplet state as a probe of structure and function in photosynthesis, Biochim. Biophys. Acta, 1057, 1-41, https://doi.org/10.1016/S0005-2728(05)80081-7.
  26. Frank, H. A., Bolt, J. D., de B. Costa, S. M., and Sauer, K. (1980), Electron paramagnetic resonance detection of carotenoid triplet states, J. Am. Chem. Soc., 102, 4893-4898, https://doi.org/10.1021/ja00535a009.
  27. Фуфина Т. Ю., Леонова М. М., Хатыпов Р. А., Христин А. М., Шувалов В. А., Васильева Л. Г. (2019) Особенности аксиального лигандирования бактериохлорофиллов в фотосинтетическом реакционном центре пурпурных бактерий, Биохимия, 84, 509-519, https://doi.org/10.1134/S0320972519040043.
  28. Фуфина Т. Ю., Васильева Л. Г., Шувалов В. А. (2010) Исследование стабильности мутантного фотосинтетического реакционного центра Rhodobacter sphaeroides I(L177)H и установление местоположения бактериохлорофилла, ковалентно связанного с белком, Биохимия, 75, 256-263, https://doi.org/10.1134/s0006297910020112.
  29. Parson, W. W., Clayton, R. K., and Cogdell, R. J. (1975) Excited states of photosynthetic reaction centers at low redox potentials, Biochim. Biophys. Acta, 387, 265-278, https://doi.org/10.1016/0005-2728(75)90109-7.
  30. Norris, J. R., Budil, D. E., Gast, P., Chang, C.-H., El-Kabbani, O., and Schiffer, M. (1989) Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: the symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26, Proc. Natl. Acad. Sci. USA, 86, 4335-4339, https://doi.org/10.1073/pnas.86.12.4335.
  31. Фуфина Т. Ю., Селиханов Г. К., Проскуряков И. И., Шувалов В. А., Васильева Л. Г. (2019) Свойства реакционных центров Rhodobacter sphaeroides с аминокислотными замещениями Ile на Tyr в позициях L177 и М206, Биохимия, 84, 739-744, https://doi.org/10.1134/S0320972519050129.
  32. Забелин А. А., Фуфина Т. Ю., Васильева Л. Г., Шкуропатова В. А., Зверева М. Г., Шкуропатов А. Я., Шувалов В. А. (2009) Мутантные реакционные центры Rhodobacter sphaeroides I(L177)H с прочно связанным бактериохлорофиллом а: структурные свойства и пигмент-белковые взаимодействия, Биохимия, 74, 86-94, https://doi.org/10.1134/s0006297909010106.
  33. Scholes, G. D. (2003) Long-range resonance energy transfer in molecular systems, Annu. Rev. Phys. Chem., 54, 57-87, https://doi.org/10.1146/annurev.physchem.54.011002.103746.
  34. Quintes, T., Mayländer, M., and Richert, S. (2023) Properties and applications of photoexcited chromophore–radical systems, Nature Rev. Chem., 7, 75-90, https://doi.org/10.1038/s41570-022-00453-y.
  35. Chidsey, C. E. D., Takiff, L., Goldstein, R. A., and Boxer, S. G. (1985) Effect of magnetic fields on the triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair, Proc. Natl. Acad. Sci. USA, 82, 6850-6854, https://doi.org/10.1073/pnas.82.20.6850.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of the amino acid residue of isoleucine L177 in the structure of wild-type C. sphaeroides RC (PDB ID: 6Z02). Car is a carotenoid

Download (134KB)
3. Fig. 2. Absorption spectra of wild-type C. sphaeroides RC (dotted line) and mutant I(L177)H (solid line), T = 100 K. The QY bands of the primary donor P lie in the region of 870-890 nm. A detailed description of the spectrum is given in Vasilieva et al. [24]

Download (73KB)
4. 3. Effect of temperature on the EPR spectra of RC mutant I(L177)H (a) and RC wild-type (b) C. sphaeroides. (1) T = 100 K, (2) T = 40 K, (3) T = 10 K. Letters on the spectra indicate: C – lines of Car triplets, P – lines of triplets of the primary donor R. The lines are indicated only in the low-field part of the spectrum. Measurement conditions: recording of a signal in the range of 0.2–1.7 microseconds after an exciting flash, λ db = 882 nm. The arrows show the direction of absorption (A) and radiation (E) of microwave power

Download (82KB)
5. Fig. 4. Changes in optical absorption at λ = 540 nm caused by excitation into the primary donor band (λvb = 870 nm) in an RC with a restored primary acceptor. a – RC of mutant I(L177)H; b – RC of wild type. T = 100 K. The inset shows the inverted response of the system to a 6-ns laser flash. Smooth curves represent the results of convolution of the flash signal with theoretical values and exponents. The parameters of the theoretical curves are given in the text

Download (77KB)
6. Fig. 5. Temperature dependences of the amplitude of the low-field EPR line of the Car triplet in the RC of mutant I(L177)H (a) and wild type (b) under conditions of a photo-reduced primary QA acceptor. The dotted lines and dots represent experimental data, and the solid lines represent curves calculated using the formula A = B*exp(−Ea/kT). The best matches with the experimental dependences were obtained at Ea = 7.5 cm -1 (a); Ea = 91 cm -1 (b). The standard deviations of the noise component of the spectra are given as measurement errors.

Download (85KB)
7. Additional materials. The appendix to the article is published on the website of the journal Biochemistry (https://biochemistrymoscow.com ).
Download (707KB)

Copyright (c) 2024 Russian Academy of Sciences