Anomalous temperature dependence of the triplet-triplet energy transfer in Cereibacter sphaeroides I(L177)H mutant reaction centers
- Authors: Fufina T.Y.1, Vasilieva L.G.1, Klenina I.B.1, Proskuryakov I.I.1
-
Affiliations:
- Institute of Basic Biological Problems, Russian Academy of Sciences
- Issue: Vol 89, No 9 (2024)
- Pages: 1523-1531
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/676558
- DOI: https://doi.org/10.31857/S0320972524090045
- EDN: https://elibrary.ru/JJXTCO
- ID: 676558
Cite item
Abstract
In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of singlet-excited oxygen generation, the potent chemical oxidant. This process in the Cereibacter sphaeroides reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine for hystidine at the 177 position of the L-subunit results in a sharp decrease of the activation energy, so the carotenoid triplets are populated even at 10 K. Activation energy of the T-T energy transfer was estimated as 7.5 cm−1, which is more than 10-fold lower than the activation energy of the original reaction centers. At certain temperatures the energy transfer in the mutant is decelerated, which is related to the increase of the effective distance of the triplet-triplet transfer. To our knowledge, the described mutation presents the first reaction center modification leading to a significant decrease in activation energy of T-T energy transfer to the carotenoid molecule. The I(L177)H mutant reaction centers present a considerable interest for further studies of the triplet state quenching mechanisms, and of other photophysical and photochemical processes in reaction centers of bacterial photosynthesis.
Full Text

About the authors
T. Y. Fufina
Institute of Basic Biological Problems, Russian Academy of Sciences
Author for correspondence.
Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region
L. G. Vasilieva
Institute of Basic Biological Problems, Russian Academy of Sciences
Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region
I. B. Klenina
Institute of Basic Biological Problems, Russian Academy of Sciences
Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region
I. I. Proskuryakov
Institute of Basic Biological Problems, Russian Academy of Sciences
Email: pros@issp.serpukhov.su
Russian Federation, 142290 Pushchino, Moscow Region
References
- Di Mascio, P., Martinez, G. R., Miyamoto, S., Ronsein, G. E., Medeiros, M. H. G., and Cadet, J. (2019), Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins, Chem. Rev., 119, 2043-2086, https://doi.org/ 10.1021/acs.chemrev.8b00554.
- Yeates, T. O., Komiya, H., Chirino, A., Rees, D. C., Allen, J. P., and Feher, G. (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions, Proc. Natl. Acad. Sci. USA, 85, 7993-7997, https://doi.org/10.1073/pnas.85.21.7993.
- Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions, Structure, 2, 925-936, https://doi.org/10.1016/S0969-2126(94)00094-8.
- Hoff, A. J., and Deisenhofer, J. (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria, Phys. Rep., 287, 1-247, https://doi.org/10.106/S0370-1573(97)00004-5.
- Blankenship, R. E. (2021) Molecular Mechanisms of Photosynthesis, 3rd ed., John Wiley & Sons, Inc., Chichester, UK.
- Parson, W. W., and Monger, T. G. (1976) Interrelationships among excited states in bacterial reaction centers, Brookhaven Symp. Biol., 28, 195-212.
- Schenck, C. C., Mathis, P., and Lutz, M. (1984) Triplet formation and triplet decay in reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides, Photochem. Photobiol., 39, 407-417, https:// doi.org/10.1111/j.1751-1097.1984.tb08198.x.
- Frank, H. A., Chynwat, V., Hartwich, G., Meyer, M., Katheder, I., and Scheer, H. (1993) Carotenoid triplet state formation in Rhodobacter sphaeroides R-26 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene, Photosyth. Res., 37, 193-203, https://doi.org/10.1007/ BF00032823.
- Frank, H. A., Innes, J., Aldema, M., Neumann, R., and Schenck, C. C. (1993) Triplet state EPR of reaction centers from the HisL173 → Leu173 mutant of Rhodobacter sphaeroides which contains a heterodimer primary donor, Photosyth. Res., 38, 99-109, https://doi.org/10.1007/BF00015066.
- Frank, H. A., Chynwat, V., Posteraro, A., Hartwich, G., Simonin, I., and Scheer, H. (1996) Triplet state energy transfer between the primary donor and the carotenoid in Rhodobacter sphaeroides R-26.1 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene, Photochem. Photobiol., 64, 823-883, https://doi.org/10.1111/j.1751-1097.1996.tb01842.x.
- Angerhofer, A., Bornhaüser, F., Aust, V., Hartwich, G., and Scheer, H. (1998) Triplet energy transfer in bacterial photosynthetic reaction centres, Biochim. Biophys. Acta, 1365, 404-420, https://doi.org/10.1016/S0005-2728(98)00093-0.
- Laible, P. D., Chynwat, V., Thurnauer, M. C., Schiffer, M., Hanson, D. K., and Frank, H. A. (1998) Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers, Biophys. J., 74, 2623-2637, https://doi.org/10.1016/S0006-3495(98)77968-8.
- De Winter, A., and Boxer, S. G. (1999) The mechanism of triplet energy transfer from the special pair to the carotenoid in bacterial photosynthetic reaction centers, J. Phys. Chem. B, 103, 8786-8789, https://doi.org/10.1021/jp992259d.
- Laible, P. D., Morris, Z. S., Thurnauer, M. C., Schiffer, M., and Hanson, D. K. (2003) Inter- and intraspecific variation in excited-state triplet energy transfer rates in reaction centers of photosynthetic bacteria, Photochem. Photobiol., 78, 114-123, https://doi.org/10.1562/0031-8655(2003)0780114IAIVIE2.0.CO2.
- Mandal, S., Carey, A.-M., Locsin, J., Gao, B.-R., Williams, J. C., Allen, J. P., Lin, S., and Woodbury, N. W. (2017) Mechanism of triplet energy transfer in photosynthetic bacterial reaction centers, J. Phys. Chem. B, 121, 6499-6510, https://doi.org/10.1021/acs.jpcb.7b03373.
- Mandal, S., Espiritu, E., Akram, N., Lin, S., Williams, J. C., Allen, J. P., and Woodbury, N. W. (2018) Influence of the electrochemical properties of the bacteriochlorophyll dimer on triplet energy-transfer dynamics in bacterial reaction centers, J. Phys. Chem. B, 122, 10097-10107, https://doi.org/10.1021/acs.jpcb.8b07985.
- Dexter, D. L. (1953) A theory of sensitized luminescence in solids, J. Chem Phys., 21, 836-850, https://doi.org/ 10.1063/1.1699044.
- You, Z.-Q., Hsu, C.-P., and Fleming, G. R. (2006) Triplet-triplet energy-transfer coupling: theory and calculation, J. Chem. Phys., 124, https://doi.org/10.1063/1.2155433.
- Хатыпов Р. А., Васильева Л. Г., Фуфина Т. Ю., Болгарина Т. И., Шувалов В. А. (2005) Влияние замещения изолейцина L177 гистидином на пигментный состав и свойства реакционных центров пурпурной бактерии Rhodobacter sphaeroides, Биохимия, 70, 1527-1533, https://doi.org/10.1007/s10541-005-0256-3.
- Cohen-Basire, G., Sistrom, W. R., and Stanier, R. Y. (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell Comp. Physiol., 49, 25-68, https://doi.org/10.1002/jcp.1030490104.
- Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Ya., and Shuvalov, V. A. (2007) Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit, FEBS Lett., 581, 5769-5773, https://doi.org/10.1016/j.febslet. 2007.11.032.
- Fufina, T. Y., Selikhanov, G. K., Gabdulkhakov, A. G., and Vasilieva, L. G. (2023) Properties and crystal structure of the Cereibacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H + F(M197)H, Membranes, 13, 157, https://doi.org/10.3390/membranes13020157.
- Фуфина Т. Ю., Васильева Л. Г. (2021) Влияние детергентов и осмолитов на термостабильность нативных и мутантных реакционных центров Rhodobacter sphaeroides, Биохимия, 86, 607-614, https://doi.org/ 10.31857/S0320972521040126.
- Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Leonova, M. M., Khatypov, R. A., and Shuvalov, V. A. (2012), The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of PA and BB bacteriochlorophylls, Biochim. Biophys. Acta, 1817, 1407-1417, https://doi.org/10.1016/j.bbabio. 2012.02.008.
- Budil, D. E., and Thurnauer, M. C. (1991), The chlorophyll triplet state as a probe of structure and function in photosynthesis, Biochim. Biophys. Acta, 1057, 1-41, https://doi.org/10.1016/S0005-2728(05)80081-7.
- Frank, H. A., Bolt, J. D., de B. Costa, S. M., and Sauer, K. (1980), Electron paramagnetic resonance detection of carotenoid triplet states, J. Am. Chem. Soc., 102, 4893-4898, https://doi.org/10.1021/ja00535a009.
- Фуфина Т. Ю., Леонова М. М., Хатыпов Р. А., Христин А. М., Шувалов В. А., Васильева Л. Г. (2019) Особенности аксиального лигандирования бактериохлорофиллов в фотосинтетическом реакционном центре пурпурных бактерий, Биохимия, 84, 509-519, https://doi.org/10.1134/S0320972519040043.
- Фуфина Т. Ю., Васильева Л. Г., Шувалов В. А. (2010) Исследование стабильности мутантного фотосинтетического реакционного центра Rhodobacter sphaeroides I(L177)H и установление местоположения бактериохлорофилла, ковалентно связанного с белком, Биохимия, 75, 256-263, https://doi.org/10.1134/s0006297910020112.
- Parson, W. W., Clayton, R. K., and Cogdell, R. J. (1975) Excited states of photosynthetic reaction centers at low redox potentials, Biochim. Biophys. Acta, 387, 265-278, https://doi.org/10.1016/0005-2728(75)90109-7.
- Norris, J. R., Budil, D. E., Gast, P., Chang, C.-H., El-Kabbani, O., and Schiffer, M. (1989) Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: the symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26, Proc. Natl. Acad. Sci. USA, 86, 4335-4339, https://doi.org/10.1073/pnas.86.12.4335.
- Фуфина Т. Ю., Селиханов Г. К., Проскуряков И. И., Шувалов В. А., Васильева Л. Г. (2019) Свойства реакционных центров Rhodobacter sphaeroides с аминокислотными замещениями Ile на Tyr в позициях L177 и М206, Биохимия, 84, 739-744, https://doi.org/10.1134/S0320972519050129.
- Забелин А. А., Фуфина Т. Ю., Васильева Л. Г., Шкуропатова В. А., Зверева М. Г., Шкуропатов А. Я., Шувалов В. А. (2009) Мутантные реакционные центры Rhodobacter sphaeroides I(L177)H с прочно связанным бактериохлорофиллом а: структурные свойства и пигмент-белковые взаимодействия, Биохимия, 74, 86-94, https://doi.org/10.1134/s0006297909010106.
- Scholes, G. D. (2003) Long-range resonance energy transfer in molecular systems, Annu. Rev. Phys. Chem., 54, 57-87, https://doi.org/10.1146/annurev.physchem.54.011002.103746.
- Quintes, T., Mayländer, M., and Richert, S. (2023) Properties and applications of photoexcited chromophore–radical systems, Nature Rev. Chem., 7, 75-90, https://doi.org/10.1038/s41570-022-00453-y.
- Chidsey, C. E. D., Takiff, L., Goldstein, R. A., and Boxer, S. G. (1985) Effect of magnetic fields on the triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair, Proc. Natl. Acad. Sci. USA, 82, 6850-6854, https://doi.org/10.1073/pnas.82.20.6850.
Supplementary files
