Dermal Fibroblast Lines from a Patient with Huntington’s Disease as a Promising Model for Studying the Pathogenesis of the Disease: Production and Characterization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Huntington’s disease (HD) is an inherited, incurable disease caused by a mutation and expansion of CAG repeats in the HTT gene encoding the huntingtin protein (mHTT). Despite numerous studies conducted on various cellular and animal models, specific mechanisms explaining the biological role of mHTT and its toxicity to striatal neurons have not yet been established, and effective therapy for patients has not been developed. We obtained and characterized a new line of dermal fibroblasts HDDF (Huntington Disease Dermal Fibroblasts) from a patient with a confirmed diagnosis of HD. The growth characteristics of the HDDF line, staining for canonical markers, karyotyping and cell phenotyping were performed. Direct differentiation of fibroblasts from the resulting line into induced striatal neurons was carried out. The new fibroblast line can be used as a cell model to study the biological role of mHTT and various manifestations of HD pathogenesis both in fibroblasts themselves and in induced neuronal cells obtained using reprogramming methods.

Full Text

Restricted Access

About the authors

N. Kraskovskaya

Institute of Cytology of the Russian Academy of Sciences

Author for correspondence.
Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

A. Koltsova

Institute of Cytology of the Russian Academy of Sciences

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

P. Parfenova

Institute of Cytology of the Russian Academy of Sciences

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

A. Shatrova

Institute of Cytology of the Russian Academy of Sciences

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

N. Yartseva

Institute of Cytology of the Russian Academy of Sciences

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

V. Nazarov

Pavlov First Saint Petersburg State Medical University

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

E. Devyatkina

Pavlov First Saint Petersburg State Medical University

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

M. Khotin

Institute of Cytology of the Russian Academy of Sciences

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

N. Mikhailova

Institute of Cytology of the Russian Academy of Sciences

Email: ninakraskovskaya@gmail.com
Russian Federation, Saint Petersburg

References

  1. Roos, R. A. (2010) Huntington’s disease: a clinical review, Orphanet J Rare Dis., 5, 40, https://doi.org/10.1186/ 1750-1172-5-40.
  2. Monk, R., and Connor, B. (2021) Cell reprogramming to model Huntington’s disease: a comprehensive review, Cells, 10, 1565, https://doi.org/10.3390/cells10071565.
  3. Lopez-Toledo, G., Silva-Lucero, M. D., Herrera-Diaz, J., Garcia, D. E., Arias-Montano, J. A., and Cardenas-Aguayo, M. D. (2022) Patient-derived fibroblasts with presenilin-1 mutations, that model aspects of Alzheimer’s disease pathology, constitute a potential object for early diagnosis, Front. Aging Neurosci., 14, 921573, https://doi.org/ 10.3389/fnagi.2022.921573.
  4. Xicota, L., Lagarde, J., Eysert, F., Grenier-Boley, B., Rivals, I., Botte, A., Forlani, S., Landron, S., Gautier, C., Gabriel, C., Bottlaender, M., Lambert, J. C., Chami, M., Sarazin, M., and Potier, M. C. (2023) Modifications of the endosomal compartment in fibroblasts from sporadic Alzheimer’s disease patients are associated with cognitive impairment, Transl. Psychiatry, 13, 54, https://doi.org/10.1038/s41398-023-02355-z.
  5. Teves, J. M. Y., Bhargava, V., Kirwan, K. R., Corenblum, M. J., Justiniano, R., Wondrak, G. T., Anandhan, A., Flores, A. J., Schipper, D. A., Khalpey, Z., Sligh, J. E., Curiel-Lewandrowski, C., Sherman, S. J., and Madhavan, L. (2017) Parkinson’s disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function, and autophagy, Front. Neurosci., 11, 737, https://doi.org/10.3389/fnins.2017.00737.
  6. Thomas, R., Moloney, E. B., Macbain, Z. K., Hallett, P. J., and Isacson, O. (2021) Fibroblasts from idiopathic Parkinson’s disease exhibit deficiency of lysosomal glucocerebrosidase activity associated with reduced levels of the trafficking receptor LIMP2, Mol. Brain, 14, 16, https://doi.org/10.1186/s13041-020-00712-3.
  7. Auburger, G., Klinkenberg, M., Drost, J., Marcus, K., Morales-Gordo, B., Kunz, W. S., Brandt, U., Broccoli, V., Reichmann, H., Gispert, S., and Jendrach, M. (2012) Primary skin fibroblasts as a model of Parkinson’s disease, Mol. Neurobiol., 46, 20-27, https://doi.org/10.1007/s12035-012-8245-1.
  8. Gerou, M., Hall, B., Woof, R., Allsop, J., Kolb, S. J., Meyer, K., Shaw, P. J., and Allen, S. P. (2021) Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts, Neurobiol. Aging, 105, 64-77, https://doi.org/10.1016/j.neurobiolaging.2021.04.013.
  9. Konrad, C., Kawamata, H., Bredvik, K. G., Arreguin, A. J., Cajamarca, S. A., Hupf, J. C., Ravits, J. M., Miller, T. M., Maragakis, N. J., Hales, C. M., Glass, J. D., Gross, S., Mitsumoto, H., and Manfredi, G. (2017) Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients, Mol. Neurodegener., 12, 76, https://doi.org/10.1186/s13024-017-0217-5.
  10. Rubio, M. A., Herrando-Grabulosa, M., Velasco, R., Blasco, I., Povedano, M., and Navarro, X. (2022) TDP-43 cytoplasmic translocation in the skin fibroblasts of ALS patients, Cells, 11, 209, https://doi.org/10.3390/cells11020209.
  11. Hung, C. L., Maiuri, T., Bowie, L. E., Gotesman, R., Son, S., Falcone, M., Giordano, J. V., Gillis, T., Mattis, V., Lau, T., Kwan, V., Wheeler, V., Schertzer, J., Singh, K., and Truant, R. (2018) A patient-derived cellular model for Huntington’s disease reveals phenotypes at clinically relevant CAG lengths, Mol. Biol. Cell, 29, 2809-2820, https://doi.org/10.1091/mbc.E18-09-0590.
  12. Fernandez-Estevez, M. A., Casarejos, M. J., Lopez Sendon, J., Garcia Caldentey, J., Ruiz, C., Gomez, A., Perucho, J., de Yebenes, J. G., and Mena, M. A. (2014) Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition, PLoS One, 9, e90202, https://doi.org/10.1371/journal.pone.0090202.
  13. Marchina, E., Misasi, S., Bozzato, A., Ferraboli, S., Agosti, C., Rozzini, L., Borsani, G., Barlati, S., and Padovani, A. (2014) Gene expression profile in fibroblasts of Huntington’s disease patients and controls, J. Neurol. Sci., 337, 42-46, https://doi.org/10.1016/j.jns.2013.11.014.
  14. Vanisova, M., Stufkova, H., Kohoutova, M., Rakosnikova, T., Krizova, J., Klempir, J., Rysankova, I., Roth, J., Zeman, J., and Hansikova, H. (2022) Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington’s disease, Ultrastruct. Pathol., 46, 462-475, https://doi.org/10.1080/01913123.2022.2100951.
  15. Reddy, P. H., Mao, P., and Manczak, M. (2009) Mitochondrial structural and functional dynamics in Huntington’s disease, Brain Res. Rev., 61, 33-48, https://doi.org/10.1016/j.brainresrev.2009.04.001.
  16. Aladdin, A., Kiraly, R., Boto, P., Regdon, Z., and Tar, K. (2019) Juvenile Huntington’s disease skin fibroblasts respond with elevated parkin level and increased proteasome activity as a potential mechanism to counterbalance the pathological consequences of mutant huntingtin protein, Int. J. Mol. Sci., 20, 5338, https://doi.org/10.3390/ijms20215338.
  17. Nekrasov, E. D., Vigont, V. A., Klyushnikov, S. A., Lebedeva, O. S., Vassina, E. M., Bogomazova, A. N., Chestkov, I. V., Semashko, T. A., Kiseleva, E., Suldina, L. A., Bobrovsky, P. A., Zimina, O. A., Ryazantseva, M. A., Skopin, A. Y., Illarioshkin, S. N., Kaznacheyeva, E. V., Lagarkova, M. A., and Kiselev, S. L. (2016) Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons, Mol. Neurodegener., 11, 27, https://doi.org/10.1186/s13024-016-0092-5.
  18. Vera, E., Bosco, N., and Studer, L. (2016) Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation, Cell Rep., 17, 1184-1192, https://doi.org/10.1016/ j.celrep.2016.09.062.
  19. Vigont, V., Nekrasov, E., Shalygin, A., Gusev, K., Klushnikov, S., Illarioshkin, S., Lagarkova, M., Kiselev, S. L., and Kaznacheyeva, E. (2018) Patient-specific iPSC-based models of Huntington’s disease as a tool to study store-operated calcium entry drug targeting, Front. Pharmacol., 9, 696, https://doi.org/10.3389/fphar. 2018.00696.
  20. Piechota, M., Latoszek, E., Liszewska, E., Hansikova, H., Klempir, J., Muhlback, A., Landwehrmeyer, G. B., Kuznicki, J., and Czeredys, M. (2023) Generation of two human iPSC lines from dermal fibroblasts of adult- and juvenile-onset Huntington’s disease patients and two healthy donors, Stem Cell Res., 71, 103194, https://doi.org/10.1016/j.scr.2023.103194.
  21. Victor, M. B., Richner, M., Hermanstyne, T. O., Ransdell, J. L., Sobieski, C., Deng, P. Y., Klyachko, V. A., Nerbonne, J. M., and Yoo, A. S. (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts, Neuron, 84, 311-323, https://doi.org/10.1016/j.neuron.2014.10.016.
  22. Victor, M. B., Richner, M., Olsen, H. E., Lee, S. W., Monteys, A. M., Ma, C., Huh, C. J., Zhang, B., Davidson, B. L., Yang, X. W., and Yoo, A. S. (2018) Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes, Nat. Neurosci., 21, 341-352, https://doi.org/10.1038/s41593-018-0075-7.
  23. Oh, Y. M., Lee, S. W., Kim, W. K., Chen, S., Church, V. A., Cates, K., Li, T., Zhang, B., Dolle, R. E., Dahiya, S., Pak, S. C., Silverman, G. A., Perlmutter, D. H., and Yoo, A. S. (2022) Age-related Huntington’s disease progression modeled in directly reprogrammed patient-derived striatal neurons highlights impaired autophagy, Nat. Neurosci., 25, 1420-1433, https://doi.org/10.1038/s41593-022-01185-4.
  24. Zhang, N., Bailus, B. J., Ring, K. L., and Ellerby, L. M. (2016) iPSC-based drug screening for Huntington’s disease, Brain Res., 1638, 42-56, https://doi.org/10.1016/j.brainres.2015.09.020.
  25. Eddings, C. R., Arbez, N., Akimov, S., Geva, M., Hayden, M. R., and Ross, C. A. (2019) Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor, Neurobiol. Dis., 129, 118-129, https://doi.org/10.1016/ j.nbd.2019.05.009.
  26. Choi, K. A., Hwang, I., Park, H. S., Oh, S. I., Kang, S., and Hong, S. (2014) Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington’s disease, Biotechnol. J., 9, 882-894, https:// doi.org/10.1002/biot.201300560.
  27. Chen, T. R. (1977) In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain, Exp. Cell Res., 104, 255-262, https://doi.org/10.1016/0014-4827(77)90089-1.
  28. ATCC Collection (1985) ATCC quality control methods for cell lines, Rockville, Md.
  29. Седова Г. П. (2008) Количественные аспекты злокачественного роста, Математическая морфология, 7.
  30. Ozkinay, C., and Mitelman, F. (1979) A simple trypsin-Giemsa technique producing simultaneous G- and C-banding in human chromosomes, Hereditas, 90, 1-4, https://doi.org/10.1111/j.1601-5223.1979.tb01287.x.
  31. Kraskovskaya, N., Bolshakova, A., Khotin, M., Bezprozvanny, I., and Mikhailova, N. (2023) Protocol Optimization for Direct Reprogramming of Primary Human Fibroblast into Induced Striatal Neurons, Int. J. Mol. Sci., 24, https://doi.org/10.3390/ijms24076799.
  32. Назаров В. Д., Лапин С. В., Гавриченко А. В., Хуторов Д. В., Лобачевская Т. В., Хальчицкий С. Е., Брачунов С. П., Красаков И. В., Виссарионов С. В., Баиндурашвили А. Г., Эмануэль В. Л., Тотолян А. А. (2017) Выявление экспансии тринуклеотидных повторов при болезни Гентингтона, Медицинская генетика, 3, 24-29.
  33. Mustaly-Kalimi, S., Gallegos, W., Marr, R. A., Gilman-Sachs, A., Peterson, D. A., Sekler, I., and Stutzmann, G. E. (2022) Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 119, e2211999119, https://doi.org/10.1073/pnas.2211999119.
  34. Ayabe, T., Takahashi, C., Ohya, R., and Ano, Y. (2022) beta-Lactolin improves mitochondrial function in Abeta-treated mouse hippocampal neuronal cell line and a human iPSC-derived neuronal cell model of Alzheimer’s disease, FASEB J., 36, e22277, https://doi.org/10.1096/fj.202101366RR.
  35. Brandstaetter, H., Kruppa, A. J., and Buss, F. (2014) Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane, Dis. Model Mech., 7, 1335-1340, https://doi.org/10.1242/dmm.017368.
  36. Liu, Y., Xue, Y., Ridley, S., Zhang, D., Rezvani, K., Fu, X. D., and Wang, H. (2014) Direct reprogramming of Huntington’s disease patient fibroblasts into neuron-like cells leads to abnormal neurite outgrowth, increased cell death, and aggregate formation, PLoS One, 9, e109621, https://doi.org/10.1371/journal.pone.0109621.
  37. Huntington’s disease Consortium (2020) Bioenergetic deficits in Huntington’s disease iPSC-derived neural cells and rescue with glycolytic metabolites, Hum. Mol. Genet., 29, 1757-1771, https://doi.org/10.1093/ hmg/ddy430.
  38. Крылова Т. А., Мусорина А. С., Зенин В. В., Кольцова А. М., Кропачева И. В., Турилова В. И., Яковлева Т. К., Полянская Г. Г. (2016) Получение и характеристика неиммортализованных клеточных линий дермальных фибробластов человека, выделенных из кожи век взрослых доноров разного возраста, Цитология, 58, 850-864.
  39. Pierzynowska, K., Gaffke, L., Cyske, Z., and Wegrzyn, G. (2019) Genistein induces degradation of mutant huntingtin in fibroblasts from Huntington’s disease patients, Metab. Brain Dis., 34, 715-720, https://doi.org/10.1007/s11011-019-00405-4.
  40. Archer, F. J., and Mancall, E. L. (1983) Cultured fibroblasts in Huntington’s disease. II. Effects of glucosamine, Arch. Neurol., 40, 24-27, https://doi.org/10.1001/archneur.1983.04050010044010.
  41. Barkley, D. S., Hardiwidjaja, S., and Menkes, J. H. (1977) Abnormalities in growth of skin fibroblasts of patients with Huntington’s disease, Ann. Neurol., 1, 426-430, https://doi.org/10.1002/ana.410010505.
  42. Scudiero, D. A., Meyer, S. A., Clatterbuck, B. E., Tarone, R. E., and Robbins, J. H. (1981) Hypersensitivity to N-methyl-N′-nitro-N-nitrosoguanidine in fibroblasts from patients with Huntington disease, familial dysautonomia, and other primary neuronal degenerations, Proc. Natl. Acad. Sci. USA, 78, 6451-6455, https://doi.org/10.1073/pnas.78.10.6451.
  43. Godin, J. D., Colombo, K., Molina-Calavita, M., Keryer, G., Zala, D., Charrin, B. C., Dietrich, P., Volvert, M. L., Guillemot, F., Dragatsis, I., Bellaiche, Y., Saudou, F., Nguyen, L., and Humbert, S. (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis, Neuron, 67, 392-406, https://doi.org/10.1016/j.neuron.2010.06.027.
  44. Garcia, V. J., Rushton, D. J., Tom, C. M., Allen, N. D., Kemp, P. J., Svendsen, C. N., and Mattis, V. B. (2019) Huntington’s disease patient-derived astrocytes display electrophysiological impairments and reduced neuronal support, Front. Neurosci., 13, 669, https://doi.org/10.3389/fnins.2019.00669.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General view of the obtained fibroblast line. a - Lifelike micrograph of the biopsy fragment and primary fibroblasts. Light microscopy. Scale of 200 μm. b and c - Lifelong micrographs of dermal fibroblast lineage at the 7th passage at 10× and 20× magnification, respectively. Light microscopy. Scale 100 μm

Download (156KB)
3. Fig. 2. Karyotype of HDDF cell line with normal chromosome number 46 XX, without structural chromosome rearrangements

Download (122KB)
4. Fig. 3. Growth characteristics of the HDDF line. Graph illustrating the growth curve of the line at the 7th, 20th, 30th and 40th passage

Download (94KB)
5. Fig. 4. Replicative senescence analysis of the HDDF line at the 7th, 20th, 30th and 40th passages. a, b, c, d - Microphotographs illustrating β-galactosidase activity in cells at the 7th, 20th, 30th and 40th passages, respectively. e - Histogram illustrating the results obtained. Data are presented as mean ± error of the mean, **** p < 0.001 according to one-way ANOVA analysis with Dunn's a posteriori test. At least 1000 cells were analysed at each passage

Download (226KB)
6. Fig. 5. Phenotyping of HDDF cells by flow cytofluorimetry (a-h)

Download (301KB)
7. Fig. 6. Immunofluorescence staining of cells for fibroblast markers. a - Staining with antibodies to vimentin. b - Staining with antibodies to α-actinin. c - Staining with antibodies to nestin. Nuclei were visualised with DAPI dye. Confocal microscopy, ×40. Scale 50 µm

Download (109KB)
8. Fig. 7. Microphotographs of induced striatum neurons derived from HDDF fibroblasts. a - Immunofluorescence staining with antibodies to MAP2 marker. b - Immunofluorescence staining with antibodies to TUJ-1 marker. c - Immunofluorescence staining with antibodies to GABA marker. d - Immunofluorescence staining with antibodies to DARPP-32 marker. Confocal microscopy, ×60. Scale bar 50 µm

Download (181KB)
9. Fig. 8. Visualisation of mHTT in fibroblasts and induced neurons of the HDDF line. a - Immunofluorescence staining of fibroblasts with antibodies to mHTT (clone mEM48). Confocal microscopy, ×60. Scale bar 50 μm. b - Immunofluorescence staining of induced striatum neurons derived from fibroblasts of the HDDF line with mEM48 antibodies (secondary antibodies conjugated to Alexa 488 fluorophore) and staining of nuclei with DAPI dye. Confocal microscopy, ×60. Scale bar 20 μm

Download (44KB)

Copyright (c) 2024 Russian Academy of Sciences