The Use of qPCR to Evaluate the Efficiency of Bulky DNA Damage Removal in Extracts of Mammalian Cells with Different Maximum Lifespan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Proteins of the nucleotide excision repair (NER) system are responsible for the detection and removal of a wide range of bulky damages from DNA, thereby making a significant contribution to maintaining genome stability in mammalian cells. Diagnosis of the functional status of NER in cells is important for detecting pathological changes in the body and evaluating the efficiency of the use of chemotherapeutic drugs. The paper describes a method for evaluating the efficiency of in vitro removal of bulky DNA damage based on the use of qPCR. Using the developed method, a comparative assessment of NER activity on cell extracts of two mammals with different lifespans – a long-lived naked mole rat (Heterocephalus glaber) and a short-lived mouse (Mus musculus) was carried out. It has been shown that the proteins of the H. glaber cell extract are 1.5 times more effective at removing bulky damage from the model DNA substrate than the proteins of the M. musculus cell extract, which is consistent with the experimental data obtained earlier. The presented development can be used not only in fundamental research of DNA repair in mammalian cells, but also in clinical practice.

Keywords

Full Text

Restricted Access

About the authors

A. A. Popov

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Russian Federation, Novosibirsk

V. A. Shamanin

BioLink LLC

Email: lavrik@niboch.nsc.ru
Russian Federation, Novosibirsk

I. O. Petruseva

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Russian Federation, Novosibirsk

A. N. Evdokimov

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Russian Federation, Novosibirsk

O. I. Lavrik

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University

Author for correspondence.
Email: lavrik@niboch.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Chatterjee, N., and Walker, G. C. (2017) Mechanisms of DNA damage, repair, and mutagenesis, Environ. Mol. Mutagen., 58, 235-263, https://doi.org/10.1002/em.22087.
  2. Krasikova, Y., Rechkunova, N., and Lavrik, O. (2021) Nucleotide excision repair: from molecular defects to neurological abnormalities, Int. J. Mol. Sci., 22, 6220, https://doi.org/10.3390/ijms22126220.
  3. Paccosi, E., Balajee, A. S., and Proietti-De-Santis, L. (2022) A matter of delicate balance: loss and gain of Cockayne syndrome proteins in premature aging and cancer, Front. Aging, 3, 960662, https://doi.org/10.3389/fragi.2022.960662.
  4. Yurchenko, A. A., Rajabi, F., Braz-Petta, T., Fassihi, H., Lehmann, A., Nishigori, C., Wang, J., Padioleau, I., Gunbin, K., Panunzi, L., Morice-Picard, F., Laplante, P., Robert, C., Kannouche, P. L., Menck, C. F. M., Sarasin, A., and Nikolaev, S. I. (2023) Genomic mutation landscape of skin cancers from DNA repair-deficient xeroderma pigmentosum patients, Nat. Commun., 14, 2561, https://doi.org/10.1038/s41467-023-38311-0.
  5. Kap, E. J., Popanda, O., and Chang-Claude, J. (2016) Nucleotide excision repair and response and survival to chemotherapy in colorectal cancer patients, Pharmacogenomics, 17, 755-794, https://doi.org/10.2217/pgs-2015-0017.
  6. Bowden, N. A. (2014) Nucleotide excision repair: why is it not used to predict response to platinum-based chemotherapy? Cancer Lett., 346, 163-171, https://doi.org/10.1016/j.canlet.2014.01.005.
  7. Kiwerska, K., and Szyfter, K. (2019) DNA repair in cancer initiation, progression, and therapy-a double-edged sword, J. Appl. Genet., 60, 329-334, https://doi.org/10.1007/s13353-019-00516-9.
  8. Evdokimov, A., Petruseva, I., Tsidulko, A., Koroleva, L., Serpokrylova, I., Silnikov, V., and Lavrik, O. (2013) New synthetic substrates of mammalian nucleotide excision repair system, Nucleic Acids Res., 41, e123, https:// doi.org/10.1093/nar/gkt301.
  9. Liu, Z., Ding, S., Kropachev, K., Lei, J., Amin, S., Broyde, S., and Geacintov, N. E. (2015) Resistance to nucleotide excision repair of bulky guanine adducts opposite abasic sites in DNA duplexes and relationships between structure and function, PLoS One, 10, e0142068, https://doi.org/10.1371/journal.pone.0137124.
  10. Lukyanchikova, N. V., Petruseva, I. O., Evdokimov, A. N., Silnikov, V. N., and Lavrik, O. I. (2016) DNA with damage in both strands as affinity probes and nucleotide excision repair substrates, Biochemistry (Moscow), 81, 263-274, https://doi.org/10.1134/S0006297916030093.
  11. Naumenko, N., Petruseva, I., Lomzov, A., and Lavrik, O. (2021) Recognition and removal of clustered DNA lesions via nucleotide excision repair, DNA Repair (Amst), 108, 103225, https://doi.org/10.1016/j.dnarep.2021.103225.
  12. Chesner, L. N., and Campbell, C. (2018) A quantitative PCR-based assay reveals that nucleotide excision repair plays a predominant role in the removal of DNA-protein crosslinks from plasmids transfected into mammalian cells, DNA Repair (Amst), 62, 18-27, https://doi.org/10.1016/j.dnarep.2018.01.004.
  13. Shen, J. C., Fox, E. J., Ahn, E. H., and Loeb, L. A. (2014) A rapid assay for measuring nucleotide excision repair by oligonucleotide retrieval, Sci. Rep., 4, 1-10, https://doi.org/10.1038/srep04894.
  14. Evdokimov, A., Kutuzov, M., Petruseva, I., Lukjanchikova, N., Kashina, E., Kolova, E., Zemerova, T., Romanenko, S., Perelman, P., Prokopov, D., Seluanov, A., Gorbunova, V., Graphodatsky, A., Trifonov, V., Khodyreva, S., and Lavrik, O. (2018) Naked mole rat cells display more efficient excision repair than mouse cells, Aging (Albany NY), 10, 1454-1473, https://doi.org/10.18632/aging.101482.
  15. Reardon, J. T., and Sancar, A. (2006) Purification and characterization of Escherichia coli and human nucleotide excision repair enzyme systems, Methods Enzymol., 408, 189-213, https://doi.org/10.1016/S0076-6879(06)08012-8.
  16. Clavé, G., Reverte, M., Vasseur, J. J., and Smietana, M. (2020) Modified internucleoside linkages for nuclease-resistant oligonucleotides, RSC Chem. Biol., 2, 94-150, https://doi.org/10.1039/d0cb00136h.
  17. Smith, C. A., Baeten, J., and Taylor, J. S. (1998) The ability of a variety of polymerases to synthesize past site-specific cis-syn, trans-syn-II, (6-4), and Dewar photoproducts of thymidylyl-(3′→5′)-thymidine, J. Biol. Chem., 273, 34, 21933-21940, https://doi.org/10.1074/jbc.273.34.21933.
  18. Taylor, J. S. (2002) New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions, Mutat. Res., 510, 55-70, https://doi.org/ 10.1016/s0027-5107(02)00252-x.
  19. Khare, V., and Eckert, K. A. (2002) The proofreading 3′→5′ exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis, Mutat. Res., 510, 45-54, https://doi.org/10.1016/s0027-5107(02)00251-8.
  20. Obeid, S., Schnur, A., Gloeckner, C., Blatter, N., Welte, W., Diederichs, K., and Marx, A. (2011) Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity, Chembiochem., 12, 1574-1580, https://doi.org/10.1002/cbic.201000783.
  21. Evdokimov, A., Popov, A., Ryabchikova, E., Koval, O., Romanenko, S., Trifonov, V., Petruseva, I., Lavrik, I., and Lavrik, O. (2021) Uncovering molecular mechanisms of regulated cell death in the naked mole rat, Aging (Albany NY), 13, 3239-3253, https://doi.org/10.18632/aging.202577.
  22. Yamamura, Y., Kawamura, Y., Oka, K., and Miura, K. (2022) Carcinogenesis resistance in the longest-lived rodent, the naked mole-rat, Cancer Sci., 113, 4030-4036, https://doi.org/10.1111/cas.15570.
  23. Boughey, H., Jurga, M., and El-Khamisy, S. F. (2021) DNA homeostasis and senescence: lessons from the naked mole rat, Int. J. Mol. Sci., 22, 11, 6011, https://doi.org/10.3390/ijms22116011.
  24. Hadj-Moussa, H., Eaton, L., Cheng, H., Pamenter, M. E., and Storey, K. B. (2022) Naked mole-rats resist the accumulation of hypoxia-induced oxidative damage, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 273, 111282, https://doi.org/10.1016/j.cbpa.2022.111282.
  25. Buffenstein R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol. A Biol. Sci. Med. Sci., 60, 1369-1377, https://doi.org/10.1093/gerona/60.11.1369.
  26. Gorbunova, V., Seluanov, A., Zhang, Z., Gladyshev, V. N., and Vijg, J. (2014) Comparative genetics of longevity and cancer: insights from long-lived rodents, Nat. Rev. Genet., 15, 531-540, https://doi.org/10.1038/nrg3728.
  27. MacRae, S. L., Croken, M. M., Calder, R. B., Aliper, A., Milholland, B., White, R. R., Zhavoronkov, A., Gladyshev, V. N., Seluanov, A., Gorbunova, V., Zhang, Z. D., and Vijg, J. (2015) DNA repair in species with extreme lifespan differences, Aging (Albany NY), 7, 1171-1184, https://doi.org/10.18632/aging.100866.
  28. Gautam, A., Fawcett, H., Burdova, K., Brazina, J., and Caldecott, K. W. (2023) APE1-dependent base excision repair of DNA photodimers in human cells, Mol. Cell, 83, 3669-3678.e7, https://doi.org/10.1016/j.molcel.2023.09.013.
  29. Saha, L. K., Wakasugi, M., Akter, S., Prasad, R., Wilson, S. H., Shimizu, N., Sasanuma, H., Huang, S. N., Agama, K., Pommier, Y., Matsunaga, T., Hirota, K., Iwai, S., Nakazawa, Y., Ogi, T., and Takeda, S. (2020) Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells, Proc. Natl. Acad. Sci. USA, 117, 14412-14420, https:// doi.org/10.1073/pnas.1920165117.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemical structures of nFlu (a) and TEG (b)

Download (77KB)
3. Fig. 2. Schematic representation of the proposed approach to assess the efficiency of in vitro bulk lesion removal by qPCR

Download (258KB)
4. Fig. 3. Analysis of nFlu/TEG- and nm/TEG-DNA amplification results. Amplification curves of nm/TEG-DNA standard samples (a), calibration graph (b) and results of nm/TEG-DNA amplification efficiency calculation (c) are presented. d - Example of nm/TEG- and nFlu/TEG-DNA amplification curves; e - mean values of C(t) and standard deviation for nm/TEG- and nFlu/TEG-DNA obtained from three measurements; f - melting curves of nm/TEG- and nFlu/TEG-DNA amplification products

Download (382KB)
5. Fig. 4. Comparative evaluation of nFlu/TEG-DNA repair efficiency by proteins of Heterocephalus glaber and Mus musculus cell extracts using qPCR. Amplification curves of nm/TEG-DNA (purple), nFlu/TEG-DNA (green), and nFlu/TEG-DNA after 30 min incubation with extract proteins (dark green) obtained for H. glaber (a) and M. musculus (b); c, comparison of nFlu/TEG-DNA repair efficiency by NER proteins of cell extract from H. glaber (a) and M. musculus (b). glaber (blue) and M. musculus (red) as a function of incubation time; d - diagram showing the differences in the efficiency of nFlu/TEG-DNA repair by NER proteins of H. glaber cell extract (blue) and M. musculus (red). glaber (blue) and M. musculus (red) after 30 min of incubation; e - evaluation of the effect of H. glaber and M. musculus cell extract proteins on nm/TEG-DNA repair. musculus on nm/TEG-DNA free of bulk damage after 30 min of incubation; f - example of melting curves of amplification products of nm/TEG-DNA (purple), nFlu/TEG-DNA (green) and nFlu/TEG-DNA after 30 min of incubation with NER proteins (dark green) of M. musculus cell extract. Results of three biological repeats are presented with standard deviation, *** p < 0.001

Download (456KB)

Copyright (c) 2024 Russian Academy of Sciences