The impairment of the assembly of vimentin filaments leads to suppression of the formation and maturation of focal contacts and an alteration of the type of cellular protrusions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by the formation of lamellipodia and/or filopodia, and membrane blebs lay at the basis of amoeboid migration. Changing the conditions of migration can lead to an alteration of the character of cell movement, for example, inhibition of Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility type. The ability of cells to switch from one type of motility to another is called migration plasticity. The cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether the organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryonic fibroblasts REF52 with normal VIF organization, with VIF knockout (REF–/–) and with a mutation inhibiting the assembly of full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase of number of cells with blebs. In fibroblasts with short fragments of vimentin the number of cells forming blebs both spontaneously and in presence of CK-666 increased significantly. Disruption of the VIF organization did not lead to the significant changes in microtubules network or myosin light chain phosphorylation, but caused a significant reduction of the focal contact system. The most pronounced and statistically significant decrease in both the size and number of focal adhesions were observed in REF117. We believe that the regulation of membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that the organization of VIFs determines the type of cell protrusions, which in turn determines the character of cell movement. A novel role of VIF as a regulator of membrane blebbing, essential for the manifestation of migratory plasticity, is shown.

Full Text

Restricted Access

About the authors

A. O. Zholudeva

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Email: tonya_alex@yahoo.com
Russian Federation, 115478 Moscow

N. S. Potapov

Lomonosov Moscow State University

Email: tonya_alex@yahoo.com

Faculty of Biology

Russian Federation, 119234 Moscow

E. A. Kozlova

Lomonosov Moscow State University

Email: tonya_alex@yahoo.com

Faculty of Biology

Russian Federation, 119234 Moscow

M. E. Lomakina

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Email: tonya_alex@yahoo.com
Russian Federation, 115478 Moscow

A. Y. Alexandrova

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Author for correspondence.
Email: tonya_alex@yahoo.com
Russian Federation, 115478 Moscow

References

  1. Petrie, R. J., and Yamada, K. M. (2012) At the leading edge of three-dimensional cell migration, J. Cell Sci., 125, 5917-5926, doi: 10.1242/jcs.093732.
  2. Pollard, T. D., and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112, 453-465, doi: 10.1016/s0092-8674(03)00120-x.
  3. Charras, G. T., Hu, C. K., Coughlin, M., and Mitchison, T. J. (2006) Reassembly of contractile actin cortex in cell blebs, J. Cell Biol., 175, 477-490, doi: 10.1083/jcb.200602085.
  4. Charras, G. T., Coughlin, M., Mitchison, T. J., and Mahadevan, L. (2008) Life and times of a cellular bleb, Biophys. J., 94, 1836-1853, doi: 10.1529/biophysj.107.113605.
  5. Chikina, A. S., Svitkina, T. M., and Alexandrova, A. Y. (2019) Time-resolved ultrastructure of the cortical actin cytoskeleton in dynamic membrane blebs, J. Cell Biol., 218, 445-454, doi: 10.1083/jcb.201806075.
  6. Laster, S. M., and Mackenzie, J. M. (1996) Bleb formation and F-actin distribution during mitosis and tumor necrosis factor-induced apoptosis, Microsc. Res. Tech., 34, 272-280, doi: 10.1002/(SICI)1097-0029(19960615)34:3 <272::AID-JEMT10>3.0.CO;2-J.
  7. Charras, G., and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia, Nat. Rev. Mol. Cell Biol., 9, 730-736, doi: 10.1038/nrm2453.
  8. Fackler, O. T., and Grosse, R. (2008) Cell motility through plasma membrane blebbing, J. Cell Biol., 181, 879-884, doi: 10.1083/jcb.200802081.
  9. Paluch, E. K., and Raz, E. (2013) The role and regulation of blebs in cell migration, Curr. Opin. Cell Biol., 25, 582-590, doi: 10.1016/j.ceb.2013.05.005.
  10. Taddei, M. L., Giannoni, E., Morandi, A., Ippolito, L., Ramazzotti, M., et al. (2014) Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells, Cell Commun. Signal., 12, 24, doi: 10.1186/ 1478-811X-12-24.
  11. Friedl, P., and Alexander, S. (2011) Cancer invasion and the microenvironment: plasticity and reciprocity, Cell, 147, 992-1009, doi: 10.1016/j.cell.2011.11.016.
  12. Friedl, P., and Wolf, K. (2010) Plasticity of cell migration: a multiscale tuning model, J. Cell Biol., 188, 11-19, doi: 10.1083/jcb.200909003.
  13. Balzer, E. M., Tong, Z., Paul, C. D., Hung, W. C., Stroka, K. M., et al. (2012) Physical confinement alters tumor cell adhesion and migration phenotypes, FASEB J., 26, 4045-4056, doi: 10.1096/fj.12-211441.
  14. Holle, A. W., Govindan Kutty Devi, N., Clar, K., Fan, A., Saif, T., et al. (2019) Cancer cells invade confined microchannels via a self-directed mesenchymal-to-amoeboid transition, Nano Lett., 10, 2280-2290, doi: 10.1021/acs.nanolett.8b04720.
  15. Paul, C., Mistriotis, P., and Konstantopoulos, K. (2017) Cancer cell motility: lessons from migration in confined spaces, Nat. Rev. Cancer, 17, 131-140, doi: 10.1038/nrc.2016.123.
  16. Liu, Y. J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., et al. (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells, Cell, 160, 659-672, doi: 10.1016/j.cell.2015.01.007.
  17. Paluch, E., Piel, M., Prost, J., Bornens, M., and Sykes, C. (2005) Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments, Biophys. J., 89, 724-733, doi: 10.1529/biophysj.105.060590.
  18. Diz-Munoz, A., Krieg, M., Bergert, M., Ibarlucea-Benitez, I., Muller, D. J., et al. (2010) Control of directed cell migration in vivo by membrane-to cortex attachment, PLoS Biol., 8, e1000544, doi: 10.1371/journal.pbio.1000544.
  19. Chikina, A. S., Rubtsova, S. N., Lomakina, M. E., Potashnikova, D. M., Vorobjev, I. A., and Alexandrova, A. Y. (2019) Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells, Biol. Cell, 111, 245-261, doi: 10.1111/boc.201800078.
  20. Seetharaman, S., and Etienne-Manneville, S. (2020) Cytoskeletal crosstalk in cell migration, Trends Cell Biol., 30, 720-735, doi: 10.1016/j.tcb.2020.06.004.
  21. Kaverina, I., and Straube, A. (2011) Regulation of cell migration by dynamic microtubules, Semin. Cell Dev. Biol., 22, 968-974, doi: 10.1016/j.semcdb.2011.09.017.
  22. Garcin, C., and Straube, A. (2019) Microtubules in cell migration, Essays Biochem., 63, 509-520, doi: 10.1042/EBC20190016.
  23. Vakhrusheva, A., Endzhievskaya, S., Zhuikov, V., Nekrasova, T., Parshina, E., et al. (2019) The role of vimentin in directional migration of rat fibroblasts, Cytoskeleton (Hoboken), 76, 467-476, doi: 10.1002/cm.21572.
  24. Sivagurunathan, S., Vahabikashi, A., Yang, H., Zhang, J., Vazquez, K., et al. (2022) Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells, Front. Cell Dev. Biol., 10, 929495, doi: 10.3389/fcell.2022.929495.
  25. Leube, R. E., Moch, M., and Windoffer, R. (2015) Intermediate filaments and the regulation of focal adhesion, Curr. Opin. Cell Biol., 32, 13-20, doi: 10.1016/j.ceb.2014.09.011.
  26. Zeisberg, M., and Neilson, E. G. (2009) Biomarkers for epithelial-mesenchymal transitions, J. Clin. Invest., 119, 1429-1437, doi: 10.1172/JCI36183.
  27. Mendez, M. G., Kojima, S.-I., and Goldman, R. D. (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition, FASEB J., 24, 1838-1851, doi: 10.1096/fj.09-151639.
  28. Gregor, M., Osmanagic-Myers, S., Burgstaller, G., Wolfram, M., Fischer, I., et al. (2014) Mechanosensing through focal adhesion-anchored intermediate filaments, FASEB J., 28, 715-729, doi: 10.1096/fj.13-231829.
  29. Schoumacher, M., Goldman, R. D., Louvard, D., and Vignjevic, D. M. (2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia, J. Cell Biol., 189, 541-556, doi: 10.1083/jcb.200909113.
  30. Lahat, G., Zhu, Q. S., Huang, K. L., Wang, S. Z., Bolshakov, S., et al. (2010) Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo micexenograft studies, PLoS One, 5, e1010, doi: 10.1371/journal.pone.0214006.
  31. Strouhalova, K., Přechová, M., Gandalovičová, A., Brábek, J., Gregor, M., and Rosel, D. (2020) Vimentin intermediate filaments as potential target for cancer treatment, Cancers, 12, 184, doi: 10.3390/cancers12010184.
  32. Bergert, M., Erzberger, A., Desai, R. A., Aspalter, I. M., Oates, A. C., et al. (2015) Force transmission during adhesion-independent migration, Nat. Cell Biol., 17, 524-529, doi: 10.1038/ncb3134.
  33. Lavenus, S. B., Tudor, S. M., Ullo, M. F., Vosatka, K. W., and Logue, J. S. (2020) A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments, J. Biol. Chem., 295, 6700-6709, doi: 10.1074/jbc.RA119.011537.
  34. Adams, G., Jr., López, M. P., Cartagena-Rivera, A. X., and Waterman, C. M. (2021) Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb-based migration, Mol. Biol. Cell, 32, 1772-1791, doi: 10.1091/mbc.E21-04-0174.
  35. Robert, A., Hookway, C., and Gelfand, V. I. (2016) Intermediate filament dynamics: What we can see now and why it matters, Bioessays, 3, 232-243, doi: 10.1002/bies.201500142.
  36. Mücke, N., Wedig, T., Bürer, A., Marekov, L. N., Steinert, P. M., et al. (2004) Molecular and biophysical characterization of assembly-starter units of human vimentin, J. Mol. Biol., 340, 97-114, doi: 10.1016/j.jmb.2004.04.039.
  37. Terriac, E., Coceano, G., Mavajian, Z., Hageman, T., Christ, A., et al. (2017) Vimentin levels and serine 71 phosphorylation in the control of cell-matrix adhesions, migration speed, and shape of transformed human fibroblasts, Cell, 6, 2, doi: 10.3390/cells6010002.
  38. Herrmann, H., and Aebi, U. (2016) Intermediate filaments: structure and assembly, Cold Spring Harb. Perspect. Biol., 8, a018242, doi: 10.1101/cshperspect.a018242.
  39. Beckham, Y., Vasquez, R. J., Stricker, J., Sayegh, K., Campillo, C., et al. (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly, PLoS One, 9, e100943, doi: 10.1371/journal.pone.0100943.
  40. Meier, M., Padilla, G. P., Herrmann, H., Wedig, T., Hergt, M., et al. (2009) Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation, J. Mol. Biol., 390, 245-261, doi: 10.1016/j.jmb.2009.04.067.
  41. Pletjushkina, O. J., Rajfur, Z., Pomorski, P., Oliver, T. N., Vasiliev, J. M., et al. (2001) Induction of cortical oscillations in spreading cells by depolymerization of microtubules, Cell Motil. Cytoskeleton, 48, 235-244, doi: 10.1002/cm.1012.
  42. Kanthou, C., and Tozer, G. M. (2002) The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells, Blood, 99, 2060-2069, doi: 10.1182/blood.v99.6.2060.
  43. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L., and Mitchison, T. J. (2005) Non-equilibration of hydrostatic pressure in blebbing cells, Nature, 435, 365-369, doi: 10.1038/nature03550.
  44. Bershadsky, A. D., Tint, I. S., and Svitkina, T. M. (1987) Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts, Cell Motil. Cytoskeleton, 8, 274-283, doi: 10.1002/cm.970080308.
  45. Petrie, R. J., Gavara, N., Chadwick, R. S., and Yamada, K. M. (2012) Nonpolarized signaling reveals two distinct modes of 3D cell migration, J. Cell Biol., 197, 439-455, doi: 10.1083/jcb.201201124.
  46. Helfand, B. T., Mendez, M. G., Murthy, S. N., Shumaker, D. K., Grin, B., et al. (2011) Vimentin organization modulates the formation of lamellipodia, Mol. Biol. Cell, 22, 1274-1289, doi: 10.1091/mbc.E10-08-0699.
  47. Nobes, C. D., and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, 81, 53-62, doi: 10.1016/0092-8674(95)90370-4.
  48. Lowery, J., Kuczmarski, E. R., Herrmann, H., and Goldman, R. D. (2015) Intermediate filaments play a pivotal role in regulating cell architecture and function, J. Biol. Chem., 290, 17145-17153, doi: 10.1074/jbc.R115.640359.
  49. Liu, C. Y., Lin, H. H., Tang, M. J., and Wang, Y. K. (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation, Oncotarget, 6, 15966-15983, doi: 10.18632/oncotarget.3862.
  50. Venu, A. P., Modi, M., Aryal, U., Tcarenkova, E., Jiu, Y., et al. (2022) Vimentin supports directional cell migration by controlling focal adhesions, bioRxiv, doi: 10.1101/2022.10.02.510295.
  51. Bergert, M., Chandradoss, S. D., Desai, R. A., and Paluch, E. (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proc. Natl. Acad. Sci. USA, 109, 14434-14439, doi: 10.1073/pnas.1207968109.
  52. Yasuda-Yamahara, M., Rogg, M., Frimmel, J., Trachte, P., Helmstaedter, M., et al. (2018) FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology, Matrix Biol., 68-69, 263-279, doi: 10.1016/j.matbio.2018.01.003.
  53. Petrie, R. J., Harlin, H. M., Korsak, L. I., and Yamada, K. M. (2017) Activating the nuclear piston mechanism of 3D migration in tumor cells, J. Cell Biol., 216, 93-100, doi: 10.1083/jcb.201605097.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cytoskeleton of fibroblasts with different organization of the IMF. Immunofluorescence staining. Upper row – actin (red) and vimentin (green), lower row – microtubules. Scale bar – 10 μm

Download (403KB)
3. Fig. 2. Differences in the ability to membrane blebbing in fibroblasts with different organization of the IMF. a – Morphology of control cells (upper row) and cells treated with 200 μM CK-666 for 1 h (lower row). DIC microscopy, scale bar 20 μm. Cells with membrane blebbing are indicated by white arrows. The insets show a high magnification of cells with blebs, highlighted in the figure by a dotted square. b – Scatter plot illustrating the area of ​​REF52, REF–/–, REF117 cells spread on the substrate; mean values ​​with standard deviations are presented. The results of 4 experiments are presented, statistical processing was performed using the GraphPad Prism program, the Kruskall-Wallis criterion (with Dunn's post hoc test): *** p < 0.001, **** p < 0.0001, ns – statistically insignificant changes, N = 60 cells for each group. c – The proportion of cells forming blebs in cultures before and after treatment with CK-666. For statistical analysis, ANOVA was used: *** p < 0.001, **** p < 0.0001, ns – statistically insignificant changes, N = 30 visual fields for each group

Download (531KB)
4. Fig. 3. Expression of MLC; pMLC and differences in the FC system in fibroblasts with different vimentin organization. a – Representative Western blot recording changes in the expression of vimentin, myosin light chain (MLC), phosphorylated myosin light chain (pMLC). Gamma-tubulin was used to control protein loading. b – Morphology of FC in cells of the studied cultures, immunofluorescent staining with antibodies to vinculin. Scale bar is 20 μm. c – Western blot demonstrating vinculin expression in three cultures, actin was used to control protein loading, densitometry was performed based on the analysis of four experiments. d – Diagrams illustrating changes in the sizes (left) and numbers (right) of FC in the studied cultures. The diagram shows the 90% interval of area values ​​and the number of individual contacts per cell. Statistical processing was performed using the GraphPad Prism program. To test the statistical significance of the differences in the area of ​​the FC in the three REF cultures, the Kruskal–Wallis test (with Dunn's post hoc test) was used: *** p < 0.001, **** p < 0.0001, ns – statistically insignificant changes, N ≥ 1004 contacts

Download (311KB)
5. Fig. 4. Diversity of protrusions formed by cells with different organization of the HMF in a three-dimensional collagen gel. a – Morphology of the formed protrusions, time from the start of shooting for each selected frame is marked, scale segment is 40 μm; b – tracks of movement of cells with different organization of the HMF in a three-dimensional collagen gel

Download (371KB)

Copyright (c) 2024 Russian Academy of Sciences