Synthesis of plyphenol-containing cationic linear and dendrimeric peptides with anti-oxidant activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Natural polyphenols are of great interest from the point of view of their use for the pharmacological control of oxidative stress and many diseases. However, the low bioavailability and rapid metabolism of polyphenols in the form of glycosides or aglycones stimulates the search for effective means of delivery into systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides can result in compounds with strong antioxidant activity and the ability to cross biological barriers. Such compounds may be in demand as drugs for antioxidant therapy, including for the treatment of viral, oncological and neurodegenerative diseases due to the diverse range of biological activities inherent in polyphenols and peptides. In this work, cationic linear and dendrimer amphiphilic cationic peptides were synthesized by the solid phase method, and a number of peptides were conjugated to gallic acid (Ga). Ga is a non-toxic natural phenolic acid and an important functional element of many flavonoids with high antioxidant activity. It was shown that the resulting Ga-peptide conjugates exhibited antioxidant (antiradical) activity that was 2-3 times higher than that of ascorbic acid. Other tests indicated that the addition of Ga did not affect the toxicity and hemolytic activity of the conjugates. Ga-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding the luciferase reporter gene; however, the addition of Ga to the N-terminus of the peptide reduced its transfection activity. Some of the resulting compounds had noticeable inhibitory activity against the E. сoli-Dh5α strain.

Full Text

Restricted Access

About the authors

A. A. Shatilov

“NRC Institute of Immunology” FMBA of Russia

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow

S. M. Andreev

“NRC Institute of Immunology” FMBA of Russia

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow

A. V. Shatilova

“NRC Institute of Immunology” FMBA of Russia

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow

E. A. Turetskiy

“NRC Institute of Immunology” FMBA of Russia; Sechenov First Moscow State Medical University (Sechenov University)

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow; 119991 Moscow

R. A. Kurmasheva

“NRC Institute of Immunology” FMBA of Russia; Sechenov First Moscow State Medical University (Sechenov University)

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow; 119991 Moscow

M. O. Babikhina

“NRC Institute of Immunology” FMBA of Russia; MIREA – Russian Technological University

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow; 119454 Moscow

L. V. Saprigina

“NRC Institute of Immunology” FMBA of Russia; MIREA – Russian Technological University

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow; 119454 Moscow

N. N. Shershakova

“NRC Institute of Immunology” FMBA of Russia

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow

D. K. Bolyakina

“NRC Institute of Immunology” FMBA of Russia

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow

V. V. Smirnov

“NRC Institute of Immunology” FMBA of Russia; Sechenov First Moscow State Medical University (Sechenov University)

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow; 119991 Moscow

I. P. Shilovsky

“NRC Institute of Immunology” FMBA of Russia

Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow

M. R. Khaitov

“NRC Institute of Immunology” FMBA of Russia; Pirogov Russian National Research Medical University

Author for correspondence.
Email: sm.andreev@nrcii.ru
Russian Federation, 115522 Moscow; 117997 Moscow

References

  1. Alam, M. S., and Czajkowsky, D. M. (2021) SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities, Cytokine Growth Factor Rev., 63, 44-57, doi: 10.1016/j.cytogfr.2021.11.001.
  2. Lozano-Sepulveda, S., Bryan-Marrugo, O. L., Cordovo-Fletes, C., Gutierrez-Ruiz, M. C., and Rivas-Estilla, A. M. (2015) Oxidative stress modulation in hepatitis C virus infected cells, World J. Hepatol., 7, 2880-2889, doi: 10.4254/ wjh.v7.i29.2880.
  3. Soomro, S. (2019) Oxidative stress and inflammation, Open J. Immun., 9, 1-20, doi: 10.4236/oji.2019.91001.
  4. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., and Bitto, A. (2017) Oxidative stress: harms and benefits for human health, Oxid. Med. Cell Longev., 2017, 8416763, doi: 10.1155/2017/8416763.
  5. Nauser, T., and Gebicki, J. M. (2017) Reaction rates of glutathione and ascorbate with alkyl radicals are too slow for protection against protein peroxidation in vivo, Arch. Biochem. Biophys., 633, 118-123, doi: 10.1016/j.abb.2017.09.011.
  6. Тараховский Ю. С., Ким Ю. А., Абдрасилов Б. С., Музафаров Е. Н. (2013) Флавоноиды: биохимия, биофизика, медицина, Пущино, Synchrobook.
  7. Andreev, S. M., Shershakova, N. N., Kozhikhova, K. V., Shatilov, A. A., Timofeeva, A. V., Turetskiy, E. A., Kudlai, D. A., and Khaitov, M. R. (2020) Promising compounds from natural sources for the COVID-19 therapy, Russ. J. Allergy, 17, 18-25, doi: 10.36691/RJA132.
  8. Вейко А. Г. (2020) Молекулярная структура, квантово-химические параметры, механизм цитопротективного действия и вклад функциональных групп в антиоксидантный потенциал флавоноидов, Вестник ВГМУ, 19, 27-39; doi: 10.22263/2312-4156.2020.5.27.
  9. Treml, J., and Šmejkal, K. (2016) Flavonoids as potent scavengers of hydroxyl radicals, Compr. Rev. Food Sci. Food Safety, 15, 720-738, doi: 10.1111/1541-4337.12204.
  10. Briguglio, G., Costa, C., Pollicino, M., Giambo, F., Catania, S., and Fenga, C. (2020) Polyphenols in cancer prevention: new insights (Review), Int. J. Func. Nutr., 1, 9, doi: 10.3892/ijfn.2020.9.
  11. Зверев Я. Ф. (2019) Противоопухолевая активность флавоноидов, Бюлл. Сибирской медицины, 18, 181-194, doi: 10.20538/1682-0363-2019-2-181–194.
  12. Perron, N. R., and Brumaghim, J. L. (2009) A Review of the antioxidant mechanisms of polyphenol, Cell. Biochem. Biophys., 53, 75-100, doi: 10.1007/s12013-009-9043-x.
  13. Das, J., Ramani, R., and Suraju, M. O. (2016) Polyphenol compounds and PKC signaling, Biochim. Biophys. Acta, 1860, 2107-2121, doi: 10.1016/j.bbagen.2016.06.022.
  14. Mulder, T. P. J., van Platerink, C. J., Schuyl, P. J. W., and van Amlsvoort, J. M. M. (2001) Analysis of theaflavins in biological fluids using liquid chromatography–electrospray mass spectrometry, J. Chrom. B, Biomed. Sci. Appl., 760, 271-279, doi: 10.1016/S0378-4347(01)00285-7.
  15. Mullen, W., Archeveque, M. A., Edwards, C. A., Matsumoto, H., and Crozier, A. (2008) Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt, J. Agric. Food Chem., 56, 11157-11164, doi: 10.1021/jf801974v.
  16. Paolino, D., Cosco, D., Cilurzo, F., and Fresta, M. (2007) Innovative Drug Delivery systems for the administration of natural compounds, Curr. Bioact. Comp., 3, 262-277, doi: 10.2174/157340707783220301.
  17. Aatif, M. (2023) Current understanding of polyphenols to enhance bioavailability for better therapies, Biomedicines, 11, 2078, doi: 10.3390/biomedicines11072078.
  18. Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R. J., and Yang, Z. (2020) Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application, Front. Pharmacol., 11, 697, doi: 10.3389/fphar.2020.00697.
  19. Kozhikhova, K. V., Andreev, S. M., Shilovskiy, I. P., Timofeeva, A. V., Gaisina, A. R., Shatilov, A. A., Turetskiy, E. A., Andreev, I. M., Smirnov, V. V., Dvornikov, A. S., and Khaitov, M. R. (2018) A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells, Org. Biomol. Chem., 2018, 8181-8190, doi: 10.1039/c8ob02039f.
  20. Khaitov, M., Nikonova, A., Shilovskiy, I., Kozhikhova, K., Kofiadi, I., Vishnyakova, L., Nikolskii, A., Gattinger, P., Kovchina, V., Barvinskaia, E., Yumashev, K., Smirnov, V., Maerle, A., Kozlov, I., Shatilov, A., Timofeeva, A., Andreev, S., Koloskova, O., Kuznetsova, N., Vasina, D., Nikiforova, M., Rybalkin, S., Sergeev, I., Trofimov, D., Martynov, A., Berzin, I., Gushchin, V., Kovalchuk, A., Borisevich, S., Valenta, R., Khaitov, R., and Skvortsova, V. (2021) Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy, 76, 2840-2854, doi: 10.1111/all.14850.
  21. Шиловский И. П., Андреев С. М., Кожихова К. В., Никольский А. А., Хаитов М. Р. (2019) Перспективы использования пептидов против респираторно-синцитиального вируса, Мол. Биология, 53, 541-560, doi: 10.1134/S002689841904013X.
  22. Piccoli, J. P., and Cilli, E. M. (2014) Synthesis and activity of conjugates Gallic acid-GnRH-III, BMC Proceed., 8, 41, doi: 10.1186/1753-6561-8-S4-P41.
  23. Lee, H., Kim, K., Oh, C., Park, C.-H., Aliya, S., Kim, H.-S., Bajpai, V. K., and Huh, Y. S. (2021) Antioxidant and anti-aging potential of a peptide formulation (Gal2–Pep) conjugated with gallic acid, RSC Adv., 11, 29407-29415, doi: 10.1039/d1ra03421a.
  24. Sanches, P. R. S., Carneiro, B. M., Batista, M. N., Braga, A. C. S., Lorenzón, E. N., Rahal, P., and Cilli, E. M. (2015) A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity, Amino Acids, 47, 1433-1443, doi: 10.1007/s00726-015-1980-7.14-16.
  25. Pereira, D., Pinto, M., Correa-da-Silva, V., and Cidade, H. (2022) Recent advances in bioactive flavonoid hybrids linked by 1,2,3-triazole ring obtained by click chemistry, Molecules, 27, 230, doi: 10.3390/molecules27010230.
  26. Ghamry, H. I., Belal, A., El-Ashrey, M. K., Tawfik, H. O., Alsantali, R. I., Obaidullah, A. J., El-Mansi, A. A., and Abdelrahman, D. (2023) Evaluating the ability of some natural phenolic acids to target the main protease and AAK1 in SARS CoV-2, Sci. Rep., 13, 7357, doi: 10.1038/s41598-023-34189-6.
  27. Sehrawat, R., Rathee, R., Akkol, E. K., Khatkar, S., Lather, A., Redhu, N., and Khatkar, A. (2022) Phenolic acids – versatile natural moiety with numerous biological applications, Curr. Topics Med. Chem., 22, 1472-1484, doi: 10.2174/1568026622666220623114450.
  28. Choi, H. J., Song, J. H., Bhatt, L. R., and Baek, S. H. (2010) Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity, Phytother. Res., 24, 1292-1296, doi: 10.1002/ptr.3101.
  29. Kratz, J. M., Andrighetti-Fröhner, C. R., Kolling, D. J., Leal, P. C., Cirne-Santos, C. C., Yunes, R. A., Nunes, R. J., Trybala, E., Bergström, T., Frugulhetti, I. C., Barardi, C. R., and Simões, C. M. (2008) Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentylgallate, Mem. Inst. Oswaldo Cruz, 103, 437-442, doi: 10.1590/s0074-02762008000500005.
  30. Yang, K., Zhang, L., Liao, P., Xiao, Z., Zhang, F., Sindaye, D., Xin, Z., Tan, C., Deng, J., Yin, Y., and Deng, B. (2020) Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action, Front. Immunol., 11, 580208, doi: 10.3389/fimmu.2020.580208.11-13.
  31. Al Zahrani, N. A., El-Shishtawy, R. M., and Asiri, A. M. (2020) Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: a review, Eur. J. Med. Chem., 204, 112609, doi: 10.1016/j.ejmech.2020.112609.
  32. Sanchez-Moreno, C., Larrauri, J. A., and Saura-Calixto, F. (1998) A procedure to measure the antiradical efficiency of polyphenols, J. Sci. Food Agric., 76, 270-276, doi: 10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9.17.
  33. Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., and Lukyanov, S. (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nat. Methods, 3, 281-286, doi: 10.1038/nmeth866.
  34. Галкина А. А., Болякина Д. К., Шатилова А. В., Шатилов А. А., Бабихина М. О., Голомидова А. К., Андреев С. М., Шершакова Н. Н., Хаитов М. Р. (2023) Разработка и оценка эффективности ранозаживляющих соединений на основе катионных пептидов и фуллерена, Медицина экстремальных ситуаций, 3, 56-64, doi: 10.47183/mes.2023.036.
  35. Özyürek, M., Bektasoglu, B., Güçlü, K., Güngör, N., and Apak, R. (2010) A novel hydrogen peroxide scavenging assay of phenolics and flavonoids using cupric reducing antioxidant capacity (CUPRAC) methodology, J. Food Comp. Analysis, 23, 689-698, doi: 10.1016/j.jfca.2010.02.013.
  36. Mishina, N. M., Markvicheva, K. N., Fradkov, A. F., Zagaynova, E. V., Schultz, C., Lukyanov, S., and Belousov, V. V. (2013) Imaging H2O2 microdomains in receptor tyrosine kinases signaling, Methods Enzymol., 526, 175-187, doi: 10.1016/B978-0-12-405883-5.00011-9.
  37. Никитин Е. А., Клейменов К. В., Батиенко Д. Д., Акуленко Д. А., Селиверстов П. В., Добрица В. П., Радченко В. Г. (2019) Новые подходы к воздействию на патогенетические звенья сепсиса, Медицинский совет, 21, 240-246, doi: 10.21518/2079-701X-2019-21-240-246.
  38. Aisa-Alvarez, A., Soto, M. E., Guarner-Lans, V., Camarena-Alejo, G., Franco-Granillo, J., Martínez-Rodríguez, E. A., Gamboa, Á. R., Manzano, P. L., and Pérez-Torres, I. (2020) Usefulness of antioxidants as adjuvant therapy for septic shock: a randomized clinical trial, Medicina, 56, 619, doi: 10.3390/medicina56110619.20.
  39. Cheng, Y., Li, X., Tse, H.-F., and Rong, J. (2018) Gallic acid-L-leucine conjugate protects mice against LPS-induced inflammation and sepsis via correcting proinflammatory lipid mediator profiles and oxidative stress, Oxid. Med. Cell. Longev., 2018, 1081287, doi: 10.1155/2018/1081287.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mass spectra (MALDI-TOF) of synthesized peptides: a – AB-9, b – AB-10, c – AB-11, d – AB-12, d – AB-13, e – AB-14, g – AB-15, h – ST-10, i – AB-32, j – AB-33, k – AST-1

Download (410KB)
3. Fig. 2. Absorption spectra in the UV and visible regions: left – AB-33, right – AB-32.

Download (87KB)
4. Fig. 3. Hemolytic activity of peptides, % of erythrocyte hemolysis in distilled water: 1 – AB-10, 2 – AB-11, 3 – AB-12, 4 – AB-13, 5 – AB-14, 6 – AB-15, 7 – ST-10, 8 – AST-1

Download (96KB)
5. Fig. 4. Fluorescence level (538 nm) of the intracellular sensor HyPer in the presence of peptides, measured before and after addition of hydrogen peroxide. 1 – Positive control, 2 – AB-10, 3 – AB-11, 4 – AB-12, 5 – AB-13, 6 – AB-14, 7 – AB-15, 8 – AST-1, 9 – ST-10. Peptides marked with asterisks have fluorescence intensity after addition of hydrogen peroxide that differed statistically significantly (p < 0.05) from the positive control.

Download (156KB)
6. Fig. 5. Comparative activity of peptides in stimulating transfection of the pGL3 plasmid encoding the luciferase reporter gene, expressed as mean values ​​± SE. 1 – Lipofectamine 3000, 2 – AB-10, 3 – AB-11, 4 – AB-12, 5 – AB-13, 6 – AB-14, 7 – AB-15, 8 – AB-32, 9 – AB-33, 10 – AST-1, 11 – ST-10, 12 – PBS (negative control)

Download (145KB)

Copyright (c) 2024 Russian Academy of Sciences