The functions of RNA N6-methyladenosine in the nucleus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

N6-methyladenosine (m6A) is one of the most abundant modifications of both eukaryotic and prokaryotic mRNAs. Recent years witnessed an accumulation of a large volume of experimental data on the involvement of m6A methylation in the regulation of stability and translation of different mRNAs. Remarkably, up until recently, the majority of such m6A-related studies have been focused on cytoplasmic functions of this modification. In this review, we overview a number of novel studies revealing the role of m6A in several key biological processes occurring in cellular nucleus, such as transcription, organization of chromatin, splicing, nuclear-cytoplasmic transport, and R-loop metabolism. Based on this analysis, we propose a model where modifications present on nuclear RNAs represent an additional layer of regulation of gene expression, that, together with DNA methylation and histone modifications, determines chromatin structure and function in various biological contexts.

Full Text

Restricted Access

About the authors

N. A. Zhigalova

Research Center of Biotechnology of the Russian Academy of Sciences

Email: ermakov99@mail.ru

Institute of Bioengineering

Russian Federation, 119071 Moscow

K. Yu. Oleynikova

Research Center of Biotechnology of the Russian Academy of Sciences

Email: ermakov99@mail.ru

Institute of Bioengineering

Russian Federation, 119071 Moscow

A. S. Ruzov

Research Center of Biotechnology of the Russian Academy of Sciences

Email: ermakov99@mail.ru

Institute of Bioengineering

Russian Federation, 119071 Moscow

A. S. Ermakov

Research Center of Biotechnology of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: ermakov99@mail.ru

Institute of Bioengineering, Faculty of Biology

Russian Federation, 119071 Moscow; 119991 Moscow

References

  1. Boccaletto, P., Machnicka, M. A., Purta, E., Piatkowski, P., Baginski, B., et al. (2018) MODOMICS: a database of RNA modification pathways. 2017 update, Nucleic Acids Res., 46, 303-307, doi: 10.1093/nar/gkx1030.
  2. Frye, M., Harada, B. T., Behm, M., and He, C. (2018) RNA modifications modulate gene expression during development, Science, 361, 1346-1349, doi: 10.1126/science.aau1646.
  3. Desrosiers, R., Friderici, K., and Rottman, F. (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells, Proc. Natl. Acad. Sci. USA, 10, 3971-3975, doi: 10.1073/pnas.71.10.3971.
  4. Perry, R. P., and Kelley, D. E. (1974) Existence of methylated messenger RNA in mouse L cells, Cell, 1, 37-42, doi: 10.1016/0092-8674(74)90153-6.
  5. Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., et al. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons, Cell, 149, 1635-1646, doi: 10.1016/j.cell.2012.05.003.
  6. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., et al. (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq, Nature, 485, 201-206, doi: 10.1038/nature11112.
  7. Deng, X., Chen, K., Luo, G. Z., Weng, X., Ji, Q., et al. (2015) Widespread occurrence of N6-methyladenosine in bacterial mRNA, Nucleic Acids Res., 43, 6557-6567, doi: 10.1093/nar/gkv596.
  8. Clancy, M. J., Shambaugh, M. E., Timpte, C. S., and Bokar, J. A. (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene, Nucleic Acids Res., 30, 4509-4518, doi: 10.1093/nar/gkf573.
  9. Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., et al. (2016) m6A modulates neuronal functions and sex determination in drosophila, Nature, 540, 242-247, doi: 10.1038/nature20568.
  10. Luo, G. Z., MacQueen, A., Zheng, G., Duan, H., Dore, L. C., et al. (2014) Unique features of the m6A methylome in arabidopsis thaliana, Nat. Commun., 5, 5630, doi: 10.1038/ncomms6630.
  11. Schibler, U., and Perry, R. P. (1977) The 50-termini of heterogeneous nuclear RNA: a comparison among molecules of different sizes and ages, Nucleic Acids Res., 4, 4133-4149, doi: 10.1093/nar/4.12.4133.
  12. Wei, C.-M., and Moss, B. (1977) Nucleotide sequences at the N6-methylade-nosine sites of HeLa cell messenger ribonucleic acid, Biochemistry, 16, 1672-1676, doi: 10.1021/bi00627a023.
  13. Liu, N., and Pan, T. (2016) N6-methyladenosine-encoded epitranscriptomics, Nat. Struct. Mol. Biol., 23, 98-102, doi: 10.1038/nsmb.3162.
  14. Ke, S., Alemu, E. A., Mertens, C., Gantman, E. C., Fak, J. J., et al. (2015) A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation, Genes Dev., 29, 2037-2053, doi: 10.1101/gad.269415.115.
  15. Shimba, S., Bokar, J. A., Rottman, F., and Reddy, R. (1995) Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro, Nucleic Acids Res., 23, 2421-2426, doi: 10.1093/nar/23.13.2421.
  16. Patil, D. P., Chen, C. K., Pickering, B. F., Chow, A., Jackson, C., et al. (2016) m6A RNA methylation promotes XIST-mediated transcriptional repression, Nature, 537, 369-373, doi: 10.1038/nature19342.
  17. Piekna-Przybylska, D., Decatur, W. A., and Fournier, M. J. (2008) The 3D rRNA modification maps database: with interactive tools for ribosome analysis, Nucleic Acids Res., 36, 178-183, doi: 10.1093/nar/gkm855.
  18. Konstantinos, B., and Lieberman, E. (2023) Biological roles of adenine methylation in RNA, Nat. Rev. Genet., 3, 143-160, doi: 10.1038/s41576-022-00534-0.
  19. Ma, Z., and Ji, J. (2020) N6-methyladenosine (m6A) RNA modification in cancer stem cells, Stem Cells, 38, 1511-1519, doi: 10.1002/stem.3279.
  20. Roundtree, I. A., Evans, M. E., Pan, T., and He, C. (2017) Dynamic RNA modifications in gene expression regulation, Cell, 169, 1187-1200, doi: 10.1016/j.cell.2017.05.045.
  21. Sledz, P., and Jinek, M. (2016) Structural insights into the molecular mechanism of the m(6)A writer complex, Elife, 5, e18434, doi: 10.7554/eLife.18434.
  22. Wang, P., Doxtader, K. A., and Nam, Y. (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases, Mol. Cell, 63, 306-317, doi: 10.1016/j.molcel.2016.05.041.
  23. Ping, X. L., Sun, B. F., Wang, L., Xiao, W., Yang, X., et al. (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase, Cell Res., 24, 177-189, doi: 10.1038/cr.2014.3.
  24. Huang, Q., Mo, J., Liao, Z., Chen, X., and Zhang, B. (2022) The RNA m6A writer WTAP in diseases: structure, roles, and mechanisms, Cell Death Disease, 13, 852, doi: 10.1038/s41419-022-05268-9.
  25. Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., et al. (2014) N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, 505, 117-120, doi: 10.1038/nature12730.
  26. Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., et al. (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency, Cell, 161, 1388-1399, doi: 10.1016/j.cell.2015.05.014.
  27. Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., et al. (2015) 5′ UTR m(6)A promotes cap-independent translation, Cell, 163, 999-1010, doi: 10.1016/j.cell.2015.10.012.
  28. Sun, W., Ming, S. T., Wu, R., and Ming, L. (2019) The role of m6A RNA methylation in cancer, Biomed. Pharmacother., 112, 108613, doi: 10.1016/j.biopha.2019.108613.
  29. Zhang, Y., Zhang, S.., Shi, M., Li, M., Zeng, J., et al. (2022) Roles of m6A modification in neurological diseases, Zhong Nan Da Xue Xue Bao Yi Xue Ban., 47, 109-115.
  30. Ivanova, I., Much, C., Di Giacomo, M., Azzi, C., Morgan, M., et al. (2017) The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence, Mol. Cell, 67, 1059-1067.e4, doi: 10.1016/j.molcel.2017.08.003.
  31. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A. F., Kol, N., et al. (2015) m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation, Science, 347, 1002-1006, doi: 10.1126/ science.1261417.
  32. Li, H. B., Tong, J., Zhu, S., Batista, P. J., Duffy, E. E., Zhao, J., et al. (2017) m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways, Nature, 548, 338-342, doi: 10.1038/nature23450.
  33. Wang, X., Tian, L., Li, Y., Wang, J., Yan, B., et al. (2021) RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent, J. Exp. Clin. Cancer Res., 40, 80, doi: 10.1186/s13046-021-01871-4.
  34. Zhang, W., Chen, Y., Zeng, Z., Peng, Y., Li, L., et al. (2022) The novel m6A writer METTL5 as prognostic biomarker probably associating with the regulation of immune microenvironment in kidney cancer, Heliyon, 8, e12078, doi: 10.1016/j.heliyon.2022.e12078.
  35. Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., et al. (2017) The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention, Cell, 169, 824-835.e14, doi: 10.1016/j.cell.2017.05.003.
  36. Mendel, M., Chen, K. M., Homolka, D., Gos, P., Pandey, R. R., et al. (2018) Methylation of structured RNA by the m6A Writer METTL16 is essential for mouse embryonic development, Mol. Cell, 71, 986-1000.e11, doi: 10.1016/ j.molcel.2018.08.004.
  37. Doxtader, K. A., Wang, P., Scarborough, A. M., Seo, D., Conrad, N. K., et al. (2018) Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor, Mol. Cell, 71, 1001-1011.e4., doi: 10.1016/ j.molcel.2018.07.025.
  38. Yang, D., Zhao, G., and Zhang, H. M. (2023) m6A reader proteins: the executive factors in modulating viral replication and host immune response, Front. Cell. Infect. Microbiol., 13, 1-20, doi: 10.3389/fcimb.2023.1151069.
  39. Guo, T., Duan, H., Chen, J., Liu, J., Othmane, B., et al. (2021) N6-methyladenosine writer gene ZC3H13 predicts immune phenotype and therapeutic opportunities in kidney renal clear cell carcinoma, Front. Oncol., 11, 718644, doi: 10.3389/fonc.2021.718644.
  40. Zhang, X., Li, M. J., Xia, L., and Zhang, H. (2022) The biological function of m6A methyltransferase KIAA1429 and its role in human disease, PeerJ, 10, e14334, doi: 10.7717/peerj.14334.
  41. Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., et al. (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO, Nat. Chem. Biol., 7, 885-887, doi: 10.1038/nchembio.687.
  42. Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C.-M., et al. (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility, Mol. Cell, 49, 18-29, doi: 10.1016/j.molcel.2012.10.015.
  43. Wei, J., Liu, F., Lu, Z., Fei, Q., Ai, Y., et al. (2018) Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm, Mol. Cell, 71, 973-985.e975, doi: 10.1016/j.molcel.2018.08.011.
  44. Kaur, S., Tam, N. Y., McDonough, M. A., Schofield, C. J., and Aik, W. S. (2022) Mechanisms of substrate recognition and N6-methyladenosine demethylation revealed by crystal structures of ALKBH5-RNA complexes, Nucleic Acids Res., 50, 4148-4160, doi: 10.1093/nar/gkac195.
  45. Panneerdoss, S., Eedunuri, V. K., Yadav, P., Timilsina, S., Rajamanickam, S., et al. (2018) Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression, Sci. Adv., 4, 1-15, doi: 10.1126/sciadv.aar8263.
  46. Zhang, C., Samanta, D., Lu, H., Bullen, J. W., Zhang, H., et al. (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA, Proc. Natl. Acad. Sci. USA, 113, E2047-E2056, doi: 10.1073/pnas.1602883113.
  47. Shi, H., Wang, X., Lu, Z., Zhao, B. S., Ma, H., et al. (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA, Cell Res., 27, 315-328, doi: 10.1038/cr.2017.15.
  48. Alarcón, C. R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., et al. (2015) HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events, Cell, 162, 1299-1308, doi: 10.1016/j.cell.2015.08.011.
  49. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., et al. (2018) Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation, Nat. Cell Biol., 20, 285-295, doi: 10.1038/s41556-018-0045-z.
  50. Han, D., Liu, J., Chen, C., Dong, L., Liu, Y., et al. (2019) Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells, Nature, 566, 270-274, doi: 10.1038/s41586-019-0916-x.
  51. Liu, N., Zhou, K. I., Parisien, M., Dai, Q., Diatchenko, L., et al. (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein, Nucleic Acids Res., 45, 6051-6063, doi: 10.1093/nar/gkx141.
  52. Zaccara, S., and Jaffrey, S. R. (2020) A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA, Cell, 181, 1582-1595, doi: 10.1016/j.cell.2020.05.012.
  53. Shi, H., Zhang, X., Weng, Y. L., Lu, Z., Liu, Y., et al. (2018) m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1, Nature, 563, 249-253, doi: 10.1038/s41586-018-0666-1.
  54. Anders, M., Chelysheva, I., Goebel, I., Trenkner, T., Zhou, J., et al. (2018) Dynamic m6A methylation facilitates mRNA triaging to stress granules, Life Sci. Alliance, 1, e201800113, doi: 10.26508/lsa.201800113.
  55. Li, X., Xiong, X., and Yi, C. (2016) Epitranscriptome sequencing technologies: decoding RNA modifications, Nat. Methods, 14, 23-31, doi: 10.1038/nmeth.4110.
  56. Hartmann, A. M., Nayler, O., Schwaiger, F. W., Obermeier, A., and Stamm, S. (1999) The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn), Mol. Biol. Cell, 10, 3909-3926, doi: 10.1091/mbc.10.11.3909.
  57. Kasowitz, S. D., Ma, J., Anderson, S. J., Leu, N. A., Xu, Y., et al. (2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development, PLoS Genet., 14, 1-28, doi: 10.1371/journal.pgen.1007412.
  58. Liu, J., Dou, X., Chen, C., Chen, C., Liu, C., et al. (2020) N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription, Science, 367, 580-586, doi: 10.1126/science.aay6018.
  59. Wojtas, M. N., Pandey, R. R., Mendel, M., Homolka, D., Sachidanandam, R., et al. (2017) Regulation of m6A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline, Mol. Cell, 68, 374-387.e12, doi: 10.1016/j.molcel.2017.09.021.
  60. Liu, N.., Dai, Q., Zheng, G., He, C., Parisien, M., et al. (2015) N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, 518, 560-564, doi: 10.1038/nature14234.
  61. Sun, M., Shen, Y., Jia, G., Deng, Z., Shi, F., et al. (2023) Activation of the HNRNPA2B1/miR-93-5p/FRMD6 axis facilitates prostate cancer progression in an m6A-dependent manner, J. Cancer, 14, 1242-1256, doi: 10.7150/jca.83863.
  62. Shatkin, A., and Manley, J. (2000) The ends of the affair: capping and polyadenylation, Nat. Struct. Biol., 7, 1-5, doi: 10.1038/79583.
  63. Salditt-Georgieff, M., Jelinek, W., Darnell, J. E., Furuichi, Y., Morgan, M., et al. (1976) Methyl labeling of HeLa cell hnRNA: a comparison with mRNA, Cell, 2, 227-237, doi: 10.1016/0092-8674(76)90022-2.
  64. Carroll, S. M., Narayan, P., and Rottman, F. M. (1990) N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA, Mol. Cell. Biol., 10, 4456-4465, doi: 10.1128/mcb.10.9.4456-4465.1990.
  65. Haussmann, I. U., Bodi, Z., Sanchez-Moran, E., Mongan, N. P., Archer, N., Fray, R. G. and Soller, M. (2016) m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination, Nature, 540, 301-304, doi: 10.1038/nature20577.
  66. Xiao, W., Adhikari, S., Dahal, U., Chen, Y. S., Hao, Y. J., et al. (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing, Mol. Cell, 61, 507-519, doi: 10.1016/j.molcel.2016.01.012.
  67. Xu, K., Yang, Y., Feng, G. H., Sun, B. F., Chen, J. Q., et al. (2017) Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation, Cell Res., 9, 1100-1114, doi: 10.1038/cr.2017.100.
  68. Zhao, X., Yang, Y., Sun, B. F., Shi, Y., Yang, X., et al. (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis, Cell Res., 24, 1403-1419, doi: 10.1038/cr.2014.151.
  69. Finkel, D., and Groner, Y. (1983) Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs, Virology, 131, 409-425, doi: 10.1016/0042-6822(83)90508-1.
  70. Lesbirel, S., and Wilson, S. A. (2019) The m6Amethylase complex and mRNA export, Biochim. Biophys. Acta Gene Regul. Mech., 3, 319-328, doi: 10.1016/j.bbagrm.2018.09.008.
  71. Viphakone, N., Hautbergue, G. M., Walsh, M., Chang, C.-T., Holland, A., et al. (2012) TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export, Nat. Commun., 3, 1006, doi: 10.1038/ncomms2005.
  72. Masuda, S., Das, R., Cheng, H., Hurt, E., Dorman, N., and Reed, R. (2005) Recruitment of the human TREX complex to mRNA during splicing, Genes Dev., 19, 1512-1517, doi: 10.1101/gad.1302205.
  73. Roundtree, I. A., Luo, G.-Z., Zhang, Z., Wang, X., Zhou, T., et al. (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs, eLife, 6, e31311, doi: 10.7554/eLife.31311.
  74. Muller-McNicoll, M., Botti, V., de Jesus Domingues, A. M., Brandl, H., Schwich, O. D., et al. (2016) SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export, Genes Dev., 30, 553-566, doi: 10.1101/gad.276477.115.
  75. Zheng, Q., Hou, J., Zhou, Y., Li, Z., and Cao, X. (2017) The RNA helicase DDX46 inhibits innate immunity by entrapping m(6)A-demethylated antiviral transcripts in the nucleus, Nat. Immunol., 18, 1094-1103, doi: 10.1038/ni.3830.
  76. Thiery, J. P., Acloque, H., Huang, R. Y. J., and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease, Cell, 139, 871-890, doi: 10.1016/j.cell.2009.11.007.
  77. Lin, X., Chai, G., Wu, Y., Li, J., Chen, F., et al. (2019) RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail, Nat. Commun., 10, 2065, doi: 10.1038/s41467-019-09865-9.
  78. Fustin, J. M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., et al. (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock, Cell, 155, 793-806, doi: 10.1016/j.cell.2013.10.026.
  79. Du, H., Zhao, Y., He, J., Zhang, Y., Xi, H., et al. (2016) YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex, Nat. Commun., 7, 12626, doi: 10.1038/ncomms12626.
  80. Li, X., and Fu, X. D. (2019) Chromatin-associated RNAs as facilitators of functional genomic interactions, Nat. Rev. Genet., 20, 503-519, doi: 10.1038/s41556-018-0045-z.
  81. Lee, J. H., Wang, R., Xiong, F., Krakowiak, J., Liao, Z., et al. (2021) Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation, Mol. Cell, 81, 3368-3385, doi: 10.1016/j.molcel.2021.07.024.
  82. Wang, K. C., and Chang, H. Y. (2011) Molecular mechanisms of long noncoding RNAs, Mol. Cell, 43, 904-914, doi: 10.1016/j.molcel.2011.08.018.
  83. Sahakyan, A., Yang, Y., and Plath, K. (2018) The role of Xist in X-chromosome dosage compensation, Trends Cell Biol., 28, 999-1013, doi: 10.1016/j.tcb.2018.05.005.
  84. Li, Y., Xia, L., Tan, K., Ye, X., Zuo, Z., et al. (2020) N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2, Nat. Genet., 52, 870-877, doi: 10.1038/s41588-020-0677-3.
  85. Liu, X. M., Mao, Y., Wang, S., Zhou, J., and Qian, S. B. (2022) METTL3 modulates chromatin and transcription dynamics during cell fate transition, Cell. Mol. Life Sci., 79, 559, doi: 10.1007/s00018-022-04590-x.
  86. Wei, J., Yu, X., Yang, L., Liu, X., Gao, B., et al. (2022) FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development, Science, 376, 968-973, doi: 10.1126/science.abe9582.
  87. Fernández-Justel, J. M., Santa-María, C., Martín-Vírgala, S., Ramesh, S., Ferrera-Lagoa, A., et al. (2022) Histone H1 regulates non-coding RNA turnover on chromatin in a m6A-dependent manner, Cell Rep., 40, 111329, doi: 10.1016/ j.celrep.2022.111329.
  88. Sun, T., Xu, Y., Xiang, Y., Ou, J., Soderblom, E. J., et al. (2023) Crosstalk between RNA m6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells, Nat. Genet., 55, 1324-1335, doi: 10.1038/s41588-023-01452-5.
  89. Sanz, L. A., Hartono, S. R., Lim, Y. W., Steyaert, S., Rajpurkar, A., et al. (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals, Mol. Cell, 1, 167-178, doi: 10.1016/ j.molcel.2016.05.032.
  90. Wahba, L., Costantino, L., Tan, F. J., Zimmer, A., and Koshland, D. (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation, Genes Dev., 11, 1327-1338, doi: 10.1101/gad.280834.116.
  91. Xu, W., Xu, H., Li, K., Fan, Y., Liu, Y., et al. (2017) The R-loop is a common chromatin feature of the Arabidopsis genome, Nat. Plants, 9, 704-714, doi: 10.1038/s41477-017-0004-x.
  92. Kornberg, A., and Baker, T. A. (1992) DNA Replication, Vol. 3, W. H. Freeman and Co., NY..
  93. Gowrishankar, J., Leela, J. K., and Anupama, K. (2013) R-loops in bacterial transcription: their causes and consequences, Transcription, 4, 153-157, doi: 10.4161/trns.25101.
  94. Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I., and Chédin, F. (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters, Mol. Cell, 45, 814-825, doi: 10.1016/j.molcel.2012.01.017.
  95. Nadel, J., Athanasiadou, R., Lemetre, C., Wijetunga, N. A., Broin, Ó. P., et al. (2015) RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships, Epigenetics Chromatin, 8, 46, doi: 10.1186/s13072-015-0040-6.
  96. Pfeiffer, V., Crittin, J., Grolimund, L., and Lingner, J. (2013) The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening, EMBO J., 21, 2861-2871, doi: 10.1038/emboj.2013.217.
  97. El Hage, A., Webb, S., Kerr, A., and Tollervey, D. (2014) Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria, PLoS Genet., 10, e1004716, doi: 10.1371/ journal.pgen.1004716.
  98. Aguilera, A., and García-Muse, T. (2012) R-loops: from transcription byproducts to threats to genome stability, Mol. Cell, 46, 115-124, doi: 10.1016/j.molcel.2012.04.009.
  99. Skourti-Stathaki, K., and Proudfoot, N. J. (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, Genes Dev., 28, 1384-1396, doi: 10.1101/gad.242990.114.
  100. Sollier, J., and Cimprich, K. A. (2015) Breaking bad: R-loops and genome integrity, Trends Cell Biol., 9, 514-522, doi: 10.1016/j.tcb.2015.05.003.
  101. Chen, L., Chen, J. Y., Zhang, X., Gu, Y., Xiao, R., et al. (2017) R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters, Mol. Cell, 68, 745-757, doi: 10.1016/j.molcel.2017.10.008.
  102. Santos-Pereira, J. M., and Aguilera, A. (2015) R loops: new modulators of genome dynamics and function, Nat. Rev. Genet., 10, 583-597, doi: 10.1038/nrg3961.
  103. Chédin, F. (2016) Nascent connections: R-loops and chromatin patterning, Trends Genet., 12, 828-838, doi: 10.1016/ j.tig.2016.10.002.
  104. Lu, W. T., Hawley, B. R., Skalka, G. L., Baldock, R. A., Smith, E. M., Bader, A. S., Malewicz, M., et al. (2018) Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair, Nat. Commun., 1, 532, doi: 10.1038/s41467-018-02893-x.
  105. Kogoma, T. (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription, Microbiol. Mol. Biol. Rev., 2, 212-223, doi: 10.1128/mmbr.61.2.212-238.1997.
  106. Massé, E., and Drolet, M. (1999) Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling, J. Biol. Chem., 23, 16659-16664, doi: 10.1074/jbc.274.23.16659.
  107. Massé, E., and Drolet, M. (1999) R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition, J. Mol. Biol., 2, 321-332, doi: 10.1006/jmbi.1999.3264.
  108. Abakir, A., Giles, T. C., Cristini, A., Foster, J. M., Dai, N., et al. (2020) N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells, Nat. Genet., 1, 48-55, doi: 10.1038/s41588-019-0549-x.
  109. Salas-Armenteros, I., Pérez-Calero, C., Bayona-Feliu, A., Tumini, E., Luna, R., et al. (2017) Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability, EMBO J., 23, 3532-3547, doi: 10.15252/embj.201797208.
  110. Wei, J., and He, C. (2021) Chromatin and transcriptional regulation by reversible RNA methylation, Curr. Opin. Cell Biol., 70, 109-115, doi: 10.1016/j.ceb.2020.11.005.
  111. Yang, X., Liu, Q. L., Xu, W., Zhang, Y. C., Yang, Y., et al. (2019) m6A promotes R-loop formation to facilitate transcription termination, Cell Res., 12, 1035-1038, doi: 10.1038/s41422-019-0235-7.
  112. Duda, K. J., Ching, R. W., Jerabek, L., Shukeir, N., Erikson, G., et al. (2021) m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin, Nucleic Acids Res., 249, 5568-5587, doi: 10.1093/nar/gkab364.
  113. Chen, L., Zhang, C., Ma, W., Huang, J., Zhao, Y., et al. (2022) METTL3-mediated m6A modification stabilizes TERRA and maintains telomere stability, Nucleic Acids Res., 50, 11619-11634, doi: 10.1093/nar/gkac1027.
  114. Ying, Y., Tang, Y., Wu, Y., Yi, J., Liu, Z., et al. (2023) Epigenetic regulation of co-transcriptional R-loops via IGF2BPs drives SEMA3F-mediated prostate cancer growth retardation and docetaxel chemosensitivity enhancement, Research Square, doi: 10.21203/rs.3.rs-3111467/v1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme illustrating the role of proteins involved in the regulation of m6A levels and interpreting this modification in eukaryotic cells. Adenosine methylation is performed by the methyltransferase complex consisting of METTL3, METTL14, and the WTAP protein. WTAP can also interact with other methyltransferases (“writers”): RBM15/15b, ZC3Y13, VIRMA. Demethylases or “erasers” ALKBH5 and FTO remove m6A from mRNA. In the nucleus and cytoplasm, m6A RNA can be recognized and regulated by various “readers”: proteins of the YTH family (YTHDC1, YTHDF1-3), the HNRNP family (HNRNPC, HNRNPG, and HNRNPA2B1), and IGF2BP1-3 factors.

Download (218KB)
3. Fig. 2. Functional roles of m6A in the cell nucleus. a – m6A regulates pre-mRNA splicing. Binding of YTHDC1 to m6A results in exon excision by blocking binding of the splicing factor SRSF10 to pre-mRNA. In the absence of adenosine N6-methylation, SRSF10 binds to pre-mRNA, resulting in exon skipping. b – Adenosine N6-methylation promotes mRNA nuclear export via interaction of YTHDC1 with the SRSF3/NXF1 protein complex; in turn, the TREX complex can recruit methyltransferases to adenine methylation sites in mRNA. c – m6A can both enhance degradation of various mRNAs and stabilize them. YTHDF2 promotes the degradation of m6A-modified transcripts by recruiting the CCR4–NOT1 deadenylase complex to the target mRNA. In turn, IGF2BP (insulin-like growth factor 2 mRNA binding protein) binds to m6A-containing mRNAs and, conversely, protects them from degradation

Download (137KB)
4. Fig. 3. The role of m6A in the organization of chromatin structure. a – m6A regulates the activity and conformation of long non-coding RNAs (lncRNAs). Xist lncRNA contains N6-adenosine, which, through an RBM15/15b-YTHDC1-dependent mechanism, promotes Xist-mediated gene repression and X-chromosome inactivation. b – YTHDC1 can bind both m6A-modified transcripts and histone H3 lysine 9 demethylase (H3K9), KDM3B, leading to histone demethylation and increased chromatin accessibility in actively transcribed regions.

Download (135KB)
5. Fig. 4. Regulation of R-loop stability in the cell: formation of RNA:DNA hybrids can lead to replication and transcription conflicts, DNA damage and double-strand breaks. N6-Methylation of adenosine in the RNA components of R-loops leads to YTHDF2-dependent degradation of RNA:DNA hybrids, thereby reducing the level of genomic instability

Download (97KB)

Copyright (c) 2024 Russian Academy of Sciences