N-terminal fragment of cardiac myosin binding protein C modulates cooperative mechanisms of the thin filament activation in the atria and ventricles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C lies on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both the kinetics of the ATP hydrolysis cycle and the lifetime of the cross bridge, as well as the calcium regulation of actin-myosin interaction, thereby modulating the contractile function of the myocardium. The role of cMyBP-C in atrial contraction is poorly studied. We examined the effect of the N-terminal C0-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of nucleotide, ATP, and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less strongly than ventricular myosin, and the C0-C2 fragment makes these differences in myosin isoforms more pronounced.

Full Text

Restricted Access

About the authors

A. M. Kochurova

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Russian Federation, 620049 Yekaterinburg

E. A. Beldiia

Institute of Immunology and Physiology of the Russian Academy of Sciences; Ural Federal University

Email: dvshchepkin@gmail.com
Russian Federation, 620049 Yekaterinburg; 620002 Ekaterinburg

V. V. Nefedova

Research Center of Biotechnology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com

Bach Institute of Biochemistry

Russian Federation, 119071 Moscow

N. S. Ryabkova

Lomonosov Moscow State University; HyTest Ltd.

Email: dvshchepkin@gmail.com

Department of Biochemistry, Faculty of Biology

Russian Federation, 119234 Moscow; 20520 Turku, Finland

D. S. Yampolskaya

Research Center of Biotechnology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com

Bach Institute of Biochemistry

Russian Federation, 119071 Moscow

A. M. Matyushenko

Research Center of Biotechnology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com

Bach Institute of Biochemistry

Russian Federation, 119071 Moscow

S. Y. Bershitsky

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Russian Federation, 620049 Yekaterinburg

G. V. Kopylova

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Russian Federation, 620049 Yekaterinburg

D. V. Shchepkin

Institute of Immunology and Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: dvshchepkin@gmail.com
Russian Federation, 620049 Yekaterinburg

References

  1. Nagayama, T., Takimoto, E., Sadayappan, S., Mudd, J. O., Seidman, J. G., Robbins, J., and Kass, D. A. (2007) Control of in vivo left ventricular [correction] contraction/relaxation kinetics by myosin binding protein C: protein kinase A phosphorylation dependent and independent regulation, Circulation, 20, 2399-2408, doi: 10.1161/ CIRCULATIONAHA.107.706523.
  2. Palmer, B. M., Georgakopoulos, D., Janssen, P. M., Wang, Y., Alpert, N. R., Belardi, D. F., Harris, S. P., Moss, R. L., Burgon, P. G., Seidman, C. E., Seidman, J. G., Maughan, D. W., and Kass, D. A. (2004) Role of cardiac myosin binding protein C in sustaining left ventricular systolic stiffening, Circ. Res., 94, 1249-1255, doi: 10.1161/01.RES.0000126898.95550.31.
  3. Janssen, P. M. (2010) Kinetics of cardiac muscle contraction and relaxation are linked and determined by properties of the cardiac sarcomere, Am. J. Physiol. Heart Circ. Physiol., 299, 1092-1099, doi: 10.1152/ajpheart.00417.2010.
  4. Fazlollahi, F., Santini Gonzalez, J. J., Repas, S. J., Canan, B. D., Billman, G. E., and Janssen, P. M. L. (2021) Contraction-relaxation coupling is unaltered by exercise training and infarction in isolated canine myocardium, J. Gen. Physiol., 153, e202012829, doi: 10.1085/jgp.202012829.
  5. Barefield, D., and Sadayappan, S. (2010) Phosphorylation and function of cardiac myosin binding protein-C in health and disease, J. Mol. Cell. Cardiol., 48, 866-875, doi: 10.1016/j.yjmcc.2009.11.014.
  6. Previs, M. J., Mun, J. Y., Michalek, A. J., Previs, S. B., Gulick, J., Robbins, J., Saber, D. M., and Craig, R. (2016) Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function, Proc. Natl. Acad. Sci. USA, 113, 3239-3244, doi: 10.1073/pnas.1522236113.
  7. Kumar, M., Haghigh, I. K., Kranias, E. G., and Sadayappan, S. (2020) Phosphorylation of cardiac myosin-binding protein-C contributes to calcium homeostasis, J. Biol. Chem., 295, 11275-11291, doi: 10.1074/jbc.RA120.013296.
  8. Huang, X., Torre, I., Chiappi, M., Yin, Z., Vydyanath, A., Cao, S., Raschdorf, O., Beeby, M., Quigley, B., de Tombe, P. P., Liu, J., Morris, E. P., and Luther, P. K. (2023) Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments, J. Muscle Res. Cell Motil., 44, 165-178, doi: 10.1007/ s10974-023-09647-3.
  9. Suay-Corredera, C., and Alegre-Cebollada, J. (2022) The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C, FEBS Lett., 596, 703-746, doi: 10.1002/1873-3468.14301.
  10. Dutta, D., Nguyen, V., Campbell, K. S., Padrón, R., and Craig, R. (2023) Cryo-EM structure of the human cardiac myosin filament, Nature, 623, 853-862, doi: 10.1038/s41586-023-06691-4.
  11. Gruen, M., and Gautel, M. (1999) Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin binding protein-C, J. Mol. Biol., 286, 933-949, doi: 10.1006/jmbi.1998.2522.
  12. Kulikovskaya, I., McClellan, G., Flavigny, J., Carrier, L., and Winegrad, S. (2003) Effect of MyBP-C binding to actin on contractility in heart muscle, J. Gen. Physiol., 122, 761-774, doi: 10.1085/jgp.200308941.
  13. Whitten, A. E., Jeffries, C. M., Harris, S. P., and Trewhella, J. (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function, Proc. Natl Acad. Sci. USA, 105, 18360-18365, doi: 10.1073/pnas.0808903105.
  14. Shaffer, J. F., Kensler, R. W., and Harris, S. P. (2009) The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner, J. Biol. Chem., 284, 12318-12327, doi: 10.1074/jbc.M808850200.
  15. Orlova, A., Galkin, V. E., Jeffries, C. M., Egelman, E. H., and Trewhella, J. (2011) The N-terminal domains of myosin binding protein C can bind polymorphically to F-actin, J. Mol. Biol., 412, 379-386, doi: 10.1016/j.jmb.2011.07.056.
  16. Bhuiyan, M. S., McLendon, P., James, J., Osinska, H., Gulick, J., Bhandary, B., Lorenz, J. N., and Robbins, J. (2016) In vivo definition of cardiac myosin-binding protein C’s critical interactions with myosin, Pflugers Arch., 468, 1685-1695, doi: 10.1007/s00424-016-1873-y.
  17. Tamborrini, D., Wang, Z., Wagner, T., Tacke, S., Stabrin, M., Grange, M., Kho, A. L., Rees, M., Bennett, P., Gautel, M., and Raunser, S. (2023) Structure of the native myosin filament in the relaxed cardiac sarcomere, Nature, 623, 863-871, doi: 10.1038/s41586-023-06690-5.
  18. Ponnam, S., and Kampourakis, T. (2022) Microscale thermophoresis suggests a new model of regulation of cardiac myosin function via interaction with cardiac myosin-binding protein C, J. Biol. Chem., 298, 101485, doi: 10.1016/ j.jbc.2021.101485.
  19. Doh, C. Y., Bharambe, N., Holmes, J. B., Dominic, K. L., Swanberg, C. E., Mamidi, R., Chen, Y., Bandyopadhyay, S., Ramachandran, R., and Stelzer, J. E. (2022) Molecular characterization of linker and loop-mediated structural modulation and hinge motion in the C4-C5 domains of cMyBPC, J. Struct. Biol., 214, 107856, doi: 10.1016/j.jsb. 2022.107856.
  20. Sadayappan, S., and de Tombe, P. P. (2012) Cardiac myosin binding protein-C: redefining its structure and function, Biophys. Rev., 4, 93-106, doi: 10.1007/s12551-012-0067-x.
  21. Walcott, S., Docken, S., and Harris, S. P. (2015) Effects of cardiac Myosin binding protein-C on actin motility are explained with a drag-activation-competition model, Biophys. J., 108, 10-13, doi: 10.1016/j.bpj.2014.11.1852.
  22. Colson, B. A., Thompson, A. R., Espinoza-Fonseca, L. M., and Thomas, D. D. (2016) Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics, Proc. Natl. Acad. Sci. USA, 113, 3233-3238, doi: 10.1073/pnas.1521281113.
  23. Moss, R. L. (2016) Cardiac myosin-binding protein C: a protein once at loose ends finds its regulatory groove, Proc. Natl. Acad. Sci. USA, 113, 3133-3135, doi: 10.1073/pnas.1602568113.
  24. Risi, C., Belknap, B., Forgacs-Lonart, E., Harris, S. P., Schröder, G. F., White, H. D., and Galkin, V. E. (2018) N-Terminal domains of cardiac myosin binding protein C cooperatively activate the thin filament, Structure, 26, 1604-1611.e4, doi: 10.1016/j.str.2018.08.007.
  25. Harris, S. P., Belknap, B., Van Sciver, R. E., White, H. D., and Galkin, V. E. (2016) C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation, Proc. Natl. Acad. Sci. USA, 113, 1558-1563, doi: 10.1073/pnas.1518891113.
  26. Mun, J. Y., Previs, M. J., Yu, H. Y., Gulick, J., Tobacman, L. S., Beck Previs, S., Robbins, J., Warshaw, D. M., and Craig, R. (2014) Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism, Proc. Natl. Acad. Sci. USA, 111, 2170-2175, doi: 10.1073/pnas.1316001111.
  27. Inchingolo, A. V., Previs, S. B., Previs, M. J., Warshaw, D. M., and Kad, N. M. (2019) Revealing the mechanism of how cardiac myosin-binding protein C N-terminal fragments sensitize thin filaments for myosin binding, Proc. Natl. Acad. Sci. USA, 116, 6828-6835, doi: 10.1073/pnas.1816480116.
  28. Stelzer, J. E., Fitzsimons, D. P., and Moss, R. L. (2006) Ablation of myosin-binding protein-C accelerates force development in mouse myocardium, Biophys. J., 90, 4119-4127, doi: 10.1529/biophysj.105.078147.
  29. Stelzer, J. E., Patel, J. R., and Moss, R. L. (2006) Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C, Circ Res., 99, 884-890, doi: 10.1161/ 01.RES.0000245191.34690.66.
  30. Napierski, N. C., Granger, K., Langlais, P. R., Moran, H. R., Strom, J., Touma, K., and Harris, S. P. (2020) A novel “Cut and Paste” method for in situ replacement of cMyBP-C reveals a new role for cMyBP-C in the regulation of contractile oscillations, Circ. Res., 126, 737-749, doi: 10.1161/CIRCRESAHA.119.315760.
  31. Razumova, M. V., Bezold, K. L., Tu, A. Y., Regnier, M., and Harris, S. P. (2008) Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae, J. Gen. Physiol., 132, 575-585, doi: 10.1085/jgp.200810013.
  32. Razumova, M. V., Shaffer, J. F., Tu, A. Y., Flint, G. V., Regnier, M., and Harris, S. P. (2006) Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: evidence for long-lived cross-bridges, J. Biol. Chem., 281, 35846-35854, doi: 10.1074/jbc.M606949200.
  33. Saber, W., Begin, K. J., Warshaw, D. M., and VanBuren, P. (2008) Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay, J. Mol. Cell Cardiol., 44, 1053-1061, doi: 10.1016/ j.yjmcc.2008.03.012.
  34. Shchepkin, D. V., Kopylova, G. V., Nikitina, L. V., Katsnelson, L. B., and Bershitsky, S. Y. (2010) Effects of cardiac myosin binding protein-C on the regulation of interaction of cardiac myosin with thin filament in an in vitro motility assay, Biochem. Biophys. Res. Commun., 401, 159-163, doi: 10.1016/j.bbrc.2010.09.040.
  35. Chandler, J., Treacy, C., Ameer-Beg, S., Ehler, E., Irving, M., and Kampourakis, T. (2012) In situ FRET-based localization of the N terminus of myosin binding protein-C in heart muscle cells, Proc. Natl. Acad. Sci. USA, 120, e2222005120, doi: 10.1073/pnas.2222005120.
  36. Nelson, S., Beck-Previs, S., Sadayappan, S., Tong, C., and Warshaw, D. M. (2023) Myosin-binding protein C stabilizes, but is not the sole determinant of SRX myosin in cardiac muscle, J. Gen. Physiol., 155, e202213276, doi: 10.1085/jgp.202213276.
  37. Moss, R. L., Fitzsimons, D. P., and Ralphe, J. C. (2015) Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium, Circ. Res., 116, 183-192, doi: 10.1161/CIRCRESAHA.116.300561.
  38. De Lange, W. J., Grimes, A. C., Hegge, L. F., and Ralphe, J. C. (2013) Ablation of cardiac myosin-binding protein-C accelerates contractile kinetics in engineered cardiac tissue, J. Gen. Physiol., 141, 73-84, doi: 10.1085/jgp.201210837.
  39. McNamara, J. W., Singh, R. R., and Sadayappan, S. (2019) Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin, Proc. Natl. Acad. Sci. USA, 116, 11731-11736, doi: 10.1073/pnas.1821660116.
  40. Tanner, B. C., Wang, Y., Robbins, J., and Palmer, B. M. (2014) Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C, J. Muscle Res. Cell Motil., 35, 267-278, doi: 10.1007/s10974-014-9390-0.
  41. Tanner, B. C. W., Previs, M. J., Wang, Y., Robbins, J., and Palmer, B. M. (2021) Cardiac myosin binding protein-C phosphorylation accelerates β-cardiac myosin detachment rate in mouse myocardium, Am. J. Physiol. Heart Circ. Physiol., 320, H1822-H1835, doi: 10.1152/ajpheart.00673.2020.
  42. Wang, L., Sadayappan, S., and Kawai, M. (2014) Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle’s elementary steps in a site-specific manner, PLoS One, 9, e113417, doi: 10.1371/journal.pone.0113417.
  43. Gordon, A. M., Homsher, E., and Regnier, M. (2000) Regulation of contraction in striated muscle, Physiol. Rev., 80, 853-924, doi: 10.1152/physrev.2000.80.2.853.
  44. Gorga, J. A., Fishbaugher, D. E., and VanBuren, P. (2003) Activation of the calcium-regulated thin filament by myosin strong binding, Biophys. J., 85, 2484-2491, doi: 10.1016/S0006-3495(03)74671-2.
  45. Narolska, N. A., Eiras, S., van Loon, R. B., Boontje, N. M., Zaremba, R., Spiegelen Berg, S. R., Stooker, W., Huybregts, M. A., Visser, F. C., van der Velden, J., and Stienen, G. J. (2005) Myosin heavy chain composition and the economy of contraction in healthy and diseased human myocardium, J. Muscle Res. Cell Motil., 26, 39-48, doi: 10.1007/ s10974-005-9005-x.
  46. Morano, I. (1999) Tuning the human heart molecular motors by myosin light chains, J. Mol. Med., 77, 544-555, doi: 10.1007/s001099900031.
  47. Yamashita, H., Sugiura, S., Fujita, H., Yasuda, S., Nagai, R., Saeki, Y., Sunagawa, K., and Sugi, H. (2003) Myosin light chain isoforms modify force-generating ability of cardiac myosin by changing the kinetics of actin-myosin interaction, Cardiovasc. Res., 60, 580-588, doi: 10.1016/j.cardiores.2003.09.011.
  48. Shchepkin, D. V., Nikitina, L. V., Bershitsky, S. Y., and Kopylova, G. V. (2017) The isoforms of α-actin and myosin affect the Ca2+ regulation of the actin-myosin interaction in the heart, Biochem. Biophys. Res. Commun., 490, 324-329, doi: 10.1016/j.bbrc.2017.06.043.
  49. Kopylova, G., Nabiev, S., Nikitina, L., Shchepkin, D., and Bershitsky, S. (2016) The properties of the actin-myosin interaction in the heart muscle depend on the isoforms of myosin but not of α-actin, Biochem. Biophys. Res. Commun., 476, 648-653, doi: 10.1016/j.bbrc.2016.06.013.
  50. Kopylova, G. V., Berg, V. Y., Kochurova, A. M., Matyushenko, A. M., Bershitsky, S. Y., and Shchepkin, D. V. (2022) The effects of the tropomyosin cardiomyopathy mutations on the calcium regulation of actin-myosin interaction in the atrium and ventricle differ, Biochem. Biophys. Res. Commun., 588, 29-33, doi: 10.1016/j.bbrc.2021.12.051.
  51. Pohlmann, L., Kröger, I., Vignier, N., Schlossarek, S., Krämer, E., Coirault, C., Sultan, K. R., El-Armouche, A., Winegrad, S., Eschenhagen, T., and Carrier, L. (2007) Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes, Circ. Res., 101, 928-938, doi: 10.1161/CIRCRESAHA.107.158774.
  52. El-Armouche, A., Boknik, P., Eschenhagen, T., Carrier, L., Knaut, M., Ravens, U., and Dobrev, D. (2006) Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation, Circulation, 114, 670-680, doi: 10.1161/CIRCULATIONAHA.106.636845.
  53. Wakili, R., Yeh, Y. H., Yan Qi, X., Greiser, M., Chartier, D., Nishida, K., Maguy, A., Villeneuve, L.-R., Boknik, P., Voigt, N., Krysiak, J., Kääb, S., Ravens, U., Linke, W. A., Stienen, G. J. M., Shi, Y., Tardif, J.-C., Schotten, U., Dobrev, D., and Nattel, S. (2010) Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs, Circ. Arrhythm. Electrophysiol., 3, 530-541, doi: 10.1161/CIRCEP.109.933036.
  54. Butova, X., Myachina, T., Simonova, R., Kochurova, A., Mukhlynina, E., Kopylova, G., Shchepkin, D., and Khokhlova, A. (2023) The inter-chamber differences in the contractile function between left and right atrial cardiomyocytes in atrial fibrillation in rats, Front. Cardiovasc. Med., 10, 1203093, doi: 10.3389/fcvm.2023.1203093.
  55. Margossian, S. S., and Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle, Methods Enzymol., 85, 55-71, doi: 10.1016/0076-6879(82)85009-x.
  56. Reiser, P. J., and Kline, W. O. (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species, Am. J. Physiol., 274, 1048-1053, doi: 10.1152/ajpheart.1998.274.3.H1048.
  57. Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin, Methods Enzymol., 85, 164-181, doi: 10.1016/0076-6879(82)85020-9.
  58. Mashanov, G. I., and Molloy, J. E. (2007) Automatic detection of single fluorophores in live cells, Biophys. J., 92, 2199-2211, doi: 10.1529/biophysj.106.081117.
  59. Deacon, J. C., Bloemink, M. J., Rezavandi, H., Geeves, M. A., and Leinwand, L. A. (2012) Identification of functional differences between recombinant human α and β cardiac myosin motors, Cell. Mol. Life Sci., 69, 2261-2277, doi: 10.1007/s00018-012-0927-3.
  60. Walklate, J., Ferrantini, C., Johnson, C. A., Tesi, C., Poggesi, C., and Geeves, M. A. (2021) Alpha and beta myosin isoforms and human atrial and ventricular contraction, Cell. Mol. Life Sci., 78, 7309-7337, doi: 10.1007/ s00018-021-03971-y.
  61. Homsher, E., Nili, M., Chen, I. Y., and Tobacman, L. S. (2003) Regulatory proteins alter nucleotide binding to acto-myosin of sliding filaments in motility assays, Biophys. J., 85, 1046-1052, doi: 10.1016/S0006-3495(03)74543-3.
  62. Tian, R., Christe, M. E., Spindler, M., Hopkins, J. C., Halow, J. M., Camacho, S. A., and Ingwall, J. S. (1997) Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart, J. Clin. Invest., 99, 745-751, doi: 10.1172/JCI119220.
  63. Sequeira, V., Najafi, A., McConnell, M., Fowler, E. D., Bollen, I. A., Wüst, R. C., dos Remedios, C., Helmes, M., White, E., Stienen, G. J., Tardiff, J., Kuster, D. W., and van der Velden, J. (2015) Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness, J. Physiol., 593, 3899-3916, doi: 10.1113/JP270354.
  64. Sugiura, S., Kobayakawa, N., Fujita, H., Yamashita, H., Momomura, S., Chaen, S., Omata, M., and Sugi, H. (1998) Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation, Circ. Res., 82, 1029-1034, doi: 10.1161/01.res.82.10.1029.
  65. Palmiter, K. A., Tyska, M. J., Dupuis, D. E., Alpert, N. R., and Warshaw, D. M. (1999) Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms, J. Physiol., 519, 669-678, doi: 10.1111/j.1469-7793.1999.0669n.x.
  66. Ratti, J., Rostkova, E., Gautel, M., and Pfuhl, M. (2011) Structure and interactions of myosin-binding protein C domain C0: cardiac-specific regulation of myosin at its neck? J. Biol. Chem., 286, 12650-12658, doi: 10.1074/ jbc.M110.156646.
  67. Nabiev, S. R., Kopylova, G. V., and Shchepkin, D. V. (2019) The effect of cardiac myosin-binding protein c on calcium regulation of the actin–myosin interaction depends on myosin light chain isoforms, Mol. Biophys., 64, 690-693, doi: 10.1134/S000635091905018X.
  68. McKillop, D. F., and Geeves, M. A. (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J., 65, 693-701, doi: 10.1016/S0006-3495(93)81110-X.
  69. Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., and Levitsky, D. I. (2020) Unique functional properties of slow skeletal muscle tropomyosin, Biochimie, 174, 1-8, doi: 10.1016/j.biochi.2020.03.013.
  70. Papp, Z., Szabó, A., Barends, J. P., and Stienen, G. J. (2002) The mechanism of the force enhancement by MgADP under simulated ischaemic conditions in rat cardiac myocytes, J. Physiol., 543, 177-189, doi: 10.1113/ jphysiol.2002.022145.
  71. Cha, Y. M., Dzeja, P. P., Shen, W. K., Jahangir, A., Hart, C. Y., Terzic, A., and Redfield, M. M. (2003) Failing atrial myocardium: energetic deficits accompany structural remodeling and electrical instability, Am. J. Physiol. Heart Circ. Physiol., 284, H1313-H1320, doi: 10.1152/ajpheart.00337.2002.
  72. Shimura, D., Nakai, G., Jiao, Q., Osanai, K., Kashikura, K., Endo, K., Soga, T., Goda, N., and Minamisawa, S. (2012) Metabolomic profiling analysis reveals chamber-dependent metabolite patterns in the mouse heart, Am. J. Physiol. Heart Circ. Physiol., 305, H494-H505, doi: 10.1152/ajpheart.00867.2012.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electropherograms of the preparation of the C0-C2 fragment of cMyBP-C and myosin heavy chains. a – Electropherogram of the preparation of the C0-C2 fragment of cMyBP-C: 1 – molecular weight marker; 2 – preparation of the C0-C2 fragment. b – Electropherogram for determining the composition of myosin heavy chain isoforms. PAGE is stained with SYPRO Ruby (Thermo Fisher Scientific, USA). The image was obtained using a GS-800 densitometer (Bio-Rad, USA). MHC – myosin heavy chains; 1 – myosin from the left ventricle; 2 – molecular weight marker (Mark12™ Unstained Standard, Invitrogen™, USA); 3 – myosin from the left atrium

Download (95KB)
3. Fig. 2. Effect of 500 nM C0-C2 fragment of cMyBP-C on the Ca2+ dependence of the sliding velocity of thin filaments on atrial (a) and ventricular (b) myosin in an in vitro motile system. Experimental data (mean ± standard deviation) were approximated by the Hill equation (1), the parameters of the equation are given in Table 2.

Download (156KB)
4. Fig. 3. Effect of the C0-C2 fragment of cMyBP-C on the dependence of the sliding velocity of thin filaments on the concentration of atrial (a) and ventricular (b) myosin in the in vitro motile system. The experimental values ​​of the velocities (mean ± standard deviation) were approximated by the Hill equation (1). The myosin concentrations at which the filament velocity was halved (Cmyosin) for ventricular myosin at pCa 4 were 97.0 ± 1.5 nM and 62.4 ± 1.2* nM without the C0-C2 fragment and with its addition, respectively; at pCa 6, these values ​​were 95.4 ± 0.6 nM and 76.7 ± 1.4 * nM. For atrial myosin, the Cmyosin values ​​at pCa 4 were 111.2 ± 1.2 nM and 67.6 ± 1.3* nM; at pCa 5.5 – 121.6 ± 1.3 nM and 37.5 ± 0.5* nM. The symbol * indicates a significant difference in the Cmyosin value in the presence of the C0-C2 fragment from that in its absence (p < 0.05)

Download (337KB)
5. Fig. 4. Effect of the C0-C2 fragment of cMyBP-C on the dependence of the sliding velocity of F-actin (a and b) and regulated thin filaments at pCa 4 (c and d) on atrial (a, c) and ventricular (b, d) myosin on the ATP concentration in the in vitro motile system. Experimental data (mean ± standard deviation) were approximated by the Hill equation (1). The CATP values ​​for the dependence of the F-actin sliding velocity on the ATP concentration in the IPS on ventricular myosin were 55.2 ± 0.1 μM and 6.5 ± 0.1* μM, and on atrial myosin – 42.8 ± 0.1 μM and 26.6 ± 0.1* μM without and in the presence of the C0-C2 fragment, respectively. The CATP values ​​for the dependence of the sliding velocity of thin filaments on the ATP concentration for ventricular myosin were 92.5 ± 2.5 μM and 86.4 ± 4.5 μM, and for atrial myosin – 53.9 ± 0.5 μM and 56.2 ± 2.5 μM. The symbol * indicates the difference in the CATP value in the presence of the C0-C2 fragment from that in its absence (p < 0.05)

Download (285KB)
6. Fig. 5. Effect of the C0-C2 fragment of cMyBP-C on the dependence of the sliding velocity of F-actin (a and c) and regulated thin filaments at pCa 4 (b and d) on atrial (a, b) and ventricular (c, d) myosin on the ADP concentration in the in vitro motile system. Experimental data (mean ± standard deviation) for F-actin (a, b) and thin filaments (d) with the C0-C2 fragment are approximated by a linear function; experimental data for F-actin and thin filaments without the C0-C2 fragment with both myosin isoforms (a, c) and for thin filaments with ventricular myosin are approximated by a logistic function (2). The CADP values ​​without the C0-C2 fragment for the dependence of the F-actin sliding velocity on atrial myosin on the ADP concentration were 3.03 ± 0.35 mM, and for the dependence of the thin filament velocity – 3.46 ± 0.23 mM. The CADP values ​​without the C0-C2 fragment for the dependence of the F-actin sliding velocity on ventricular myosin on the ADP concentration were 1.84 ± 0.2 mM; for thin filaments, the CADP value without the C0-C2 fragment was 2.12 ± 0.15 mM, and in its presence – 1.00 ± 0.25 mM

Download (328KB)
7. Fig. 6. Effect of ADP on the calcium dependence of the sliding velocity of thin filaments on ventricular (a) and atrial (b) myosin in an in vitro motile system. Experimental values ​​of the velocities (mean ± standard deviation) are approximated by the Hill equation (1). The parameters of the Hill equation are presented in Table 3.

Download (200KB)

Copyright (c) 2024 Russian Academy of Sciences