Immunology of SARS-CoV-2 infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to WHO data, about 800 million of the world population had contracted a coronavirus infection caused by SARS-CoV-2 by mid-2023. The properties of this virus allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. The severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses while SARS-CoV-2 evading from the immune system action. In the review we discussed the immune responses triggered in response to SARS-CoV-2 virus entry into the cell and the malfunctions of the immune system leading to the development of severe disease.

Full Text

Restricted Access

About the authors

A. G. Gabdoulkhakova

Kazan (Volga region) Federal University; Kazan State Medical Academy, Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education «Russian Medical Academy of Continuous Professional Education» of the Ministry of Healthcare of the Russian Federation

Email: AiGGabdulhakova@kpfu.ru
Russian Federation, 420008 Kazan; 420012 Kazan

R. N. Mingaleeva

Kazan (Volga region) Federal University

Email: AiGGabdulhakova@kpfu.ru
Russian Federation, 420008 Kazan

A. M. Romozanova

Kazan (Volga region) Federal University

Email: AiGGabdulhakova@kpfu.ru
Russian Federation, 420008 Kazan

A. R. Sagdeeva

Kazan (Volga region) Federal University

Email: AiGGabdulhakova@kpfu.ru
Russian Federation, 420008 Kazan

Yu. V. Filina

Kazan (Volga region) Federal University

Email: AiGGabdulhakova@kpfu.ru
Russian Federation, 420008 Kazan

A. A. Rizvanov

Kazan (Volga region) Federal University; Academy of Sciences of the Republic of Tatarstan

Email: AiGGabdulhakova@kpfu.ru

Department of Medical and Biological Sciences

Russian Federation, 420008 Kazan; 420111 Kazan

R. R. Miftakhova

Kazan (Volga region) Federal University

Author for correspondence.
Email: AiGGabdulhakova@kpfu.ru
Russian Federation, 420008 Kazan

References

  1. Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G., and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 203, 631-637, doi: 10.1002/path.1570.
  2. Jackson, C. B., Farzan, M., Chen, B., and Choe, H. (2022) Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23, 3-20, doi: 10.1038/s41580-021-00418-x.
  3. Bohan, D., Van Ert, H., Ruggio, N., Rogers, K. J., Badreddine, M., Aguilar Briseno, J. A., Elliff, J. M., Rojas Chavez, R. A., Gao, B., Stokowy, T., Christakou, E., Kursula, P., Micklem, D., Gausdal, G., Haim, H., Minna, J., Lorens, J. B., and Maury, W. (2021) Phosphatidylserine receptors enhance SARS-CoV-2 infection, PLoS Pathog., 17, e1009743, doi: 10.1371/journal.ppat.1009743.
  4. Knyazev, E., Nersisyan, S., and Tonevitsky, A. (2021) Endocytosis and transcytosis of SARS-CoV-2 across the intestinal epithelium and other tissue barriers, Front. Immunol., 12, 636966, doi: 10.3389/fimmu.2021.636966.
  5. Sefik, E., Qu, R., Junqueira, C., Kaffe, E., Mirza, H., Zhao, J., Brewer, J. R., Han, A., Steach, H. R., Israelow, B., Blackburn, H. N., Velazquez, S. E., Chen, Y. G., Halene, S., Iwasaki, A., Meffre, E., Nussenzweig, M., Lieberman, J., Wilen, C. B., Kluger, Y., et al. (2022) Inflammasome activation in infected macrophages drives COVID-19 pathology, Nature, 606, 585-593, doi: 10.1038/s41586-022-04802-1.
  6. Lee, W. S., Wheatley, A. K., Kent, S. J., and DeKosky, B. J. (2020) Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies, Nat. Microbiol., 5, 1185-1191, doi: 10.1038/s41564-020-00789-5.
  7. Koch, J., Uckeley, Z. M., Doldan, P., Stanifer, M., Boulant, S., and Lozach, P. Y. (2021) TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells, EMBO J., 40, e107821, doi: 10.15252/embj.2021107821.
  8. Healy, E. F. (2022) How tetraspanin-mediated cell entry of SARS-CoV-2 can dysregulate the shedding of the ACE2 receptor by ADAM17, Biochem. Biophys. Res. Commun., 593, 52-56, doi: 10.1016/j.bbrc.2022.01.038.
  9. Hantak, M. P., Qing, E., Earnest, J. T., and Gallagher, T. (2019) Tetraspanins: architects of viral entry and exit platforms, J. Virol., 93, doi: 10.1128/JVI.01429-17.
  10. New, C., Lee, Z. Y., Tan, K. S., Wong, A. H., Wang, Y., and Tran, T. (2021) Tetraspanins: host factors in viral infections, Int. J. Mol. Sci., 22, 11609, doi: 10.3390/ijms222111609.
  11. Luan, B., Huynh, T., Cheng, X., Lan, G., and Wang, H. R. (2020) Targeting proteases for treating COVID-19, J. Proteome Res., 19, 4316-4326, doi: 10.1021/acs.jproteome.0c00430.
  12. Bollavaram, K., Leeman, T. H., Lee, M. W., Kulkarni, A., Upshaw, S. G., Yang, J., Song, H., and Platt, M. O. (2021) Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V, Protein Sci., 30, 1131-1143, doi: 10.1002/pro.4073.
  13. Mustafa, Z., Kalbacher, H., and Burster, T. (2022) Occurrence of a novel cleavage site for cathepsin G adjacent to the polybasic sequence within the proteolytically sensitive activation loop of the SARS-CoV-2 Omicron variant: the amino acid substitution N679K and P681H of the spike protein, PLoS One, 17, e0264723, doi: 10.1371/journal.pone.0264723.
  14. Yu, S., Zheng, X., Zhou, B., Li, J., Chen, M., Deng, R., Wong, G., Lavillette, D., and Meng, G. (2022) SARS-CoV-2 spike engagement of ACE2 primes S2′ site cleavage and fusion initiation, Proc. Natl. Acad. Sci. USA, 119, e2111199119, doi: 10.1073/pnas.2111199119.
  15. Cheng, M. H., Krieger, J. M., Banerjee, A., Xiang, Y., Kaynak, B., Shi, Y., Arditi, M., and Bahar, I. (2022) Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions, iScience, 25, 103939, doi: 10.1016/j.isci.2022.103939.
  16. Rajah, M. M., Bernier, A., Buchrieser, J., and Schwartz, O. (2022) The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation, J. Mol. Biol., 434, 167280, doi: 10.1016/j.jmb.2021.167280.
  17. Bottcher-Friebertshauser, E., Klenk, H. D., and Garten, W. (2013) Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium, Pathog. Dis., 69, 87-100, doi: 10.1111/2049-632X.12053.
  18. Seidah, N. G., Pasquato, A., and Andreo, U. (2021) How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses, 13, 1229, doi: 10.3390/v13071229.
  19. Li, Q., Liu, Y., and Zhang, L. (2022) Cytoplasmic tail determines the membrane trafficking and localization of SARS-CoV-2 spike protein, Front. Mol. Biosci., 9, 1004036, doi: 10.3389/fmolb.2022.1004036.
  20. Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., and Wang, H. (2020) The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens, Front. Immunol., 11, 576622, doi: 10.3389/fimmu.2020.576622.
  21. Zhang, Z., Zheng, Y., Niu, Z., Zhang, B., Wang, C., Yao, X., Peng, H., Franca, D. N., Wang, Y., Zhu, Y., Su, Y., Tang, M., Jiang, X., Ren, H., He, M., Wang, Y., Gao, L., Zhao, P., Shi, H., Chen, Z., et al. (2021) SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death Differ., 28, 2765-2777, doi: 10.1038/s41418- 021-00782-3.
  22. Bussani, R., Schneider, E., Zentilin, L., Collesi, C., Ali, H., Braga, L., Volpe, M. C., Colliva, A., Zanconati, F., Berlot, G., Silvestri, F., Zacchigna, S., and Giacca, M. (2020) Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology, EBioMedicine, 61, 103104, doi: 10.1016/j.ebiom.2020.103104.
  23. Manan, A., Pirzada, R. H., Haseeb, M., and Choi, S. (2022) Toll-like receptor mediation in SARS-CoV-2: a therapeutic approach, Int. J. Mol. Sci., 23, 10716, doi: 10.3390/ijms231810716.
  24. Hou, W., Wang, S., Wu, H., Xue, L., Wang, B., Wang, S., and Wang, H. (2022) Small GTPase-a key role in host cell for coronavirus infection and a potential target for coronavirus vaccine adjuvant discovery, Viruses, 14, 2044, doi: 10.3390/v14092044.
  25. Dimitrov, D. S. (2004) Virus entry: molecular mechanisms and biomedical applications, Nat. Rev. Microbiol., 2, 109-122, doi: 10.1038/nrmicro817.
  26. Oughtred, R., Rust, J., Chang, C., Breitkreutz, B. J., Stark, C., Willems, A., Boucher, L., Leung, G., Kolas, N., Zhang, F., Dolma, S., Coulombe-Huntington, J., Chatr-Aryamontri, A., Dolinski, K., and Tyers, M. (2021) The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions, Protein Sci., 30, 187-200, doi: 10.1002/pro.3978.
  27. Schiuma, G., Beltrami, S., Bortolotti, D., Rizzo, S., and Rizzo, R. (2022) Innate Immune Response in SARS-CoV-2 Infection, Microorganisms, 10, 501, doi: 10.3390/microorganisms10030501.
  28. Zhang, S., Wang, L., and Cheng, G. (2022) The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies, Mol. Ther., 30, 1869-1884, doi: 10.1016/j.ymthe.2022.02.014.
  29. Farrag, M. A., Amer, H. M., Bhat, R., Hamed, M. E., Aziz, I. M., Mubarak, A., Dawoud, T. M., Almalki, S. G., Alghofaili, F., Alnemare, A. K., Al-Baradi, R. S., Alosaimi, B., and Alturaiki, W. (2021) SARS-CoV-2: an overview of virus genetics, transmission, and immunopathogenesis, Int. J. Environ Res. Public Health, 18, 6312, doi: 10.3390/ijerph18126312.
  30. Sette, A., and Crotty, S. (2021) Adaptive immunity to SARS-CoV-2 and COVID-19, Cell, 184, 861-880, doi: 10.1016/ j.cell.2021.01.007.
  31. Mabrey, F. L., Morrell, E. D., and Wurfel, M. M. (2021) TLRs in COVID-19: how they drive immunopathology and the rationale for modulation, Innate Immun., 27, 503-513, doi: 10.1177/17534259211051364.
  32. Bain, C. C., Lucas, C. D., and Rossi, A. G. (2022) Pulmonary macrophages and SARS-Cov2 infection, Int. Rev. Cell Mol. Biol., 367, 1-28, doi: 10.1016/bs.ircmb.2022.01.001.
  33. Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., Liu, L., Amit, I., Zhang, S., and Zhang, Z. (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat. Med., 26, 842-844, doi: 10.1038/s41591-020-0901-9.
  34. Wang Chau, C., and Sugimura, R. (2022) Locked in a pro-inflammatory state, Elife, 11, e80699, doi: 10.7554/eLife.80699.
  35. Salina, A. C. G., Dos-Santos, D., Rodrigues, T. S., Fortes-Rocha, M., Freitas-Filho, E. G., Alzamora-Terrel, D. L., Castro, I. M. S., Fraga da Silva, T. F. C., de Lima, M. H. F., Nascimento, D. C., Silva, C. M., Toller-Kawahisa, J. E., Becerra, A., Oliveira, S., Caetite, D. B., Almeida, L., Ishimoto, A. Y., Lima, T. M., Martins, R. B., Veras, F., et al. (2022) Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells, Elife, 11, e74443, doi: 10.7554/eLife.74443.
  36. Georgakopoulou, V. E., Makrodimitri, S., Triantafyllou, M., Samara, S., Voutsinas, P. M., Anastasopoulou, A., Papageorgiou, C. V., Spandidos, D. A., Gkoufa, A., Papalexis, P., Xenou, E., Chelidonis, G., Sklapani, P., Trakas, N., and Sipsas, N. V. (2022) Immature granulocytes: Innovative biomarker for SARSCoV2 infection, Mol. Med. Rep., 26, 217, doi: 10.3892/mmr.2022.12733.
  37. Dean, L. S., Devendra, G., Jiyarom, B., Subia, N., Tallquist, M. D., Nerurkar, V. R., Chang, S. P., Chow, D. C., Shikuma, C. M., and Park, J. (2022) Phenotypic alteration of low-density granulocytes in people with pulmonary post-acute sequalae of SARS-CoV-2 infection, Front. Immunol., 13, 1076724, doi: 10.3389/fimmu.2022.1076724.
  38. Воробьева, Н. В. (2020) Нейтрофильные внеклеточные ловушки: новые аспекты, Вестник Московского университета, Серия 16, Биология, 75, 16.
  39. Labzin, L. I., Chew, K. Y., Eschke, K., Wang, X., Esposito, T., Stocks, C. J., Rae, J., Patrick, R., Mostafavi, H., Hill, B., Yordanov, T. E., Holley, C. L., Emming, S., Fritzlar, S., Mordant, F. L., Steinfort, D. P., Subbarao, K., Nefzger, C. M., Lagendijk, A. K., Gordon, E. J., et al. (2023) Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release, Sci. Signal., 16, eabq1366, doi: 10.1126/scisignal.abq1366.
  40. Jalloh, S., Olejnik, J., Berrigan, J., Nisa, A., Suder, E. L., Akiyama, H., Lei, M., Ramaswamy, S., Tyagi, S., Bushkin, Y., Muhlberger, E., and Gummuluru, S. (2022) CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses, PLoS Pathog., 18, e1010479, doi: 10.1371/journal.ppat.1010479.
  41. Knoll, R., Schultze, J. L., and Schulte-Schrepping, J. (2021) Monocytes and macrophages in COVID-19, Front. Immunol., 12, 720109, doi: 10.3389/fimmu.2021.720109.
  42. Laidlaw, B. J., and Ellebedy, A. H. (2022) The germinal centre B cell response to SARS-CoV-2, Nat. Rev. Immunol., 22, 7-18, doi: 10.1038/s41577-021-00657-1.
  43. Shen, X. R., Geng, R., Li, Q., Chen, Y., Li, S. F., Wang, Q., Min, J., Yang, Y., Li, B., Jiang, R. D., Wang, X., Zheng, X. S., Zhu, Y., Jia, J. K., Yang, X. L., Liu, M. Q., Gong, Q. C., Zhang, Y. L., Guan, Z. Q., Li, H. L., et al. (2022) ACE2-independent infection of T lymphocytes by SARS-CoV-2, Signal. Transduct. Target Ther., 7, 83, doi: 10.1038/s41392-022-00919-x.
  44. Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., Stralin, K., Gorin, J. B., Olsson, A., Llewellyn-Lacey, S., Kamal, H., Bogdanovic, G., Muschiol, S., Wullimann, D. J., Kammann, T., Emgard, J., Parrot, T., Folkesson, E., Karolinska, C.-S. G., Rooyackers, O., Eriksson, L. I., Henter, J. I., Sonnerborg, A., et al. (2020) Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19, Cell, 183, 158-168 e114, doi: 10.1016/j.cell.2020.08.017.
  45. Shakiba, M. H., Gemund, I., Beyer, M., and Bonaguro, L. (2023) Lung T cell response in COVID-19, Front. Immunol., 14, 1108716, doi: 10.3389/fimmu.2023.1108716.
  46. Ogura, H., Gohda, J., Lu, X., Yamamoto, M., Takesue, Y., Son, A., Doi, S., Matsushita, K., Isobe, F., Fukuda, Y., Huang, T. P., Ueno, T., Mambo, N., Murakami, H., Kawaguchi, Y., Inoue, J. I., Shirai, K., Yamasaki, S., Hirata, J. I., and Ishido, S. (2022) Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19, Nat. Commun., 13, 7063, doi: 10.1038/s41467-022-34655-1.
  47. Moss, P. (2022) The T cell immune response against SARS-CoV-2, Nat. Immunol., 23, 186-193, doi: 10.1038/s41590-021-01122-w.
  48. Du, J., Wei, L., Li, G., Hua, M., Sun, Y., Wang, D., Han, K., Yan, Y., Song, C., Song, R., Zhang, H., Han, J., Liu, J., and Kong, Y. (2021) Persistent high percentage of HLA-DR+CD38(high) CD8+ T cells associated with immune disorder and disease severity of COVID-19, Front. Immunol., 12, 735125, doi: 10.3389/fimmu.2021.735125.
  49. Cheng, M. H., Zhang, S., Porritt, R. A., Noval Rivas, M., Paschold, L., Willscher, E., Binder, M., Arditi, M., and Bahar, I. (2020) Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation, Proc. Natl. Acad. Sci. USA, 117, 25254-25262, doi: 10.1073/pnas.2010722117.
  50. Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A., and Ng, L. F. P. (2020) The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol., 20, 363-374, doi: 10.1038/s41577-020-0311-8.
  51. Flower, T. G., Buffalo, C. Z., Hooy, R. M., Allaire, M., Ren, X., and Hurley, J. H. (2021) Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein, Proc. Natl. Acad. Sci. USA, 118, e2021785118, doi: 10.1073/pnas.2021785118.
  52. Zhang, Y., Chen, Y., Li, Y., Huang, F., Luo, B., Yuan, Y., Xia, B., Ma, X., Yang, T., Yu, F., Liu, J., Liu, B., Song, Z., Chen, J., Yan, S., Wu, L., Pan, T., Zhang, X., Li, R., Huang, W., et al. (2021) The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Iota, Proc. Natl. Acad. Sci. USA, 118, e2024202118, doi: 10.1073/pnas.2024202118.
  53. Arshad, N., Laurent-Rolle, M., Ahmed, W. S., Hsu, J. C., Mitchell, S. M., Pawlak, J., Sengupta, D., Biswas, K. H., and Cresswell, P. (2023) SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression, Proc. Natl. Acad. Sci. USA, 120, e2208525120, doi: 10.1073/pnas.2208525120.
  54. Redondo, N., Zaldivar-Lopez, S., Garrido, J. J., and Montoya, M. (2021) SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns, Front. Immunol., 12, 708264, doi: 10.3389/fimmu.2021.708264.
  55. Yoo, J. S., Sasaki, M., Cho, S. X., Kasuga, Y., Zhu, B., Ouda, R., Orba, Y., de Figueiredo, P., Sawa, H., and Kobayashi, K. S. (2021) SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis, Nat. Commun., 12, 6602, doi: 10.1038/s41467-021-26910-8.
  56. Zandi, M., Shafaati, M., Kalantar-Neyestanaki, D., Pourghadamyari, H., Fani, M., Soltani, S., Kaleji, H., and Abbasi, S. (2022) The role of SARS-CoV-2 accessory proteins in immune evasion, Biomed. Pharmacother., 156, 113889, doi: 10.1016/j.biopha.2022.113889.
  57. Hackbart, M., Deng, X., and Baker, S. C. (2020) Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors, Proc. Natl. Acad. Sci. USA, 117, 8094-8103, doi: 10.1073/pnas.1921485117.
  58. Wang, Z., Zhou, P., Muecksch, F., Cho, A., Ben Tanfous, T., Canis, M., Witte, L., Johnson, B., Raspe, R., Schmidt, F., Bednarski, E., Da Silva, J., Ramos, V., Zong, S., Turroja, M., Millard, K. G., Yao, K. H., Shimeliovich, I., Dizon, J., Kaczynska, A., et al. (2022) Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans, J. Exp. Med., 219, e20221006, doi: 10.1084/jem.20221006.
  59. Felsenstein, S., Herbert, J. A., McNamara, P. S., and Hedrich, C. M. (2020) COVID-19: Immunology and treatment options, Clin. Immunol., 215, 108448, doi: 10.1016/j.clim.2020.108448.
  60. Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduondo, L., Samir, P., Zheng, M., Sundaram, B., Banoth, B., Malireddi, R. K. S., Schreiner, P., Neale, G., Vogel, P., Webby, R., Jonsson, C. B., and Kanneganti, T. D. (2021) Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes, Cell, 184, 149-168.e117, doi: 10.1016/j.cell.2020.11.025.
  61. Meng, Q. F., Tian, R., Long, H., Wu, X., Lai, J., Zharkova, O., Wang, J. W., Chen, X., and Rao, L. (2021) Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm, Adv. Mater., 33, e2100012, doi: 10.1002/adma.202100012.
  62. Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., Chen, Y., and Zhang, Y. (2020) COVID-19: immunopathogenesis and Immunotherapeutics, Signal. Transduct. Target Ther., 5, 128, doi: 10.1038/s41392-020-00243-2.
  63. Yang, L., Xie, X., Tu, Z., Fu, J., Xu, D., and Zhou, Y. (2021) The signal pathways and treatment of cytokine storm in COVID-19, Signal. Transduct. Target Ther., 6, 255, doi: 10.1038/s41392-021-00679-0.
  64. Zhu, Y., Dong, X., Liu, N., Wu, T., Chong, H., Lei, X., Ren, L., Wang, J., and He, Y. (2022) SARS-CoV-2 fusion-inhibitory lipopeptides maintain high potency against divergent variants of concern including Omicron, Emerg. Microbes Infect., 11, 1819-1827, doi: 10.1080/22221751.2022.2098060.
  65. Peacock, T. P., Brown, J. C., Zhou, J., Thakur, N., Newman, J., Kugathasan, R., Sukhova, K., Kaforou, M., Bailey, D., and Barclay, W. S. (2022) The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry, bioRxiv, doi: 10.1101/2021.12.31.474653.
  66. Chan, K. K., Tan, T. J. C., Narayanan, K. K., and Procko, E. (2021) An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants, Sci. Adv., 7, doi: 10.1126/sciadv.abf1738.
  67. Lythgoe, K. A., Hall, M., Ferretti, L., de Cesare, M., MacIntyre-Cockett, G., Trebes, A., Andersson, M., Otecko, N., Wise, E. L., Moore, N., Lynch, J., Kidd, S., Cortes, N., Mori, M., Williams, R., Vernet, G., Justice, A., Green, A., Nicholls, S. M., Ansari, M. A., et al. (2021) SARS-CoV-2 within-host diversity and transmission, Science, 372, doi: 10.1126/science.abg0821.
  68. Mendes-Correa, M. C., Salomao, M. C., Ghilardi, F., Tozetto-Mendoza, T. R., Santos Villas-Boas, L., de Paula, A. V., Paiao, H. G. O., da Costa, A. C., Leal, F. E., Ferraz, A. B. C., Sales, F. C. S., Claro, I. M., Ferreira, N. E., Pereira, G. M., da Silva, A. R., Jr., Freire, W., Espinoza, E. P. S., Manuli, E. R., Romano, C. M., de Jesus, J. G., et al. (2023) SARS-CoV-2 detection and culture in different biological specimens from immunocompetent and immunosuppressed COVID-19 patients infected with two different viral strains, Viruses, 15, 1270, doi: 10.3390/v15061270.
  69. Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., and Katzourakis, A. (2023) The evolution of SARS-CoV-2, Nat. Rev. Microbiol., 21, 361-379, doi: 10.1038/s41579-023-00878-2.
  70. Leitao, I. C., Calil, P. T., Galliez, R. M., Moreira, F. R. R., Mariani, D., Castineiras, A. C. P., da Silva, G. P. D., Maia, R. A., Correa, I. A., Monteiro, F. L. L., de Souza, M. R. M., Goncalves, C. C. A., Higa, L. M., de Jesus Ribeiro, L., Fonseca, V. W. P., Bastos, V. C., Voloch, C. M., Faffe, D. S., da Costa Ferreira, O., Jr., Tanuri, A., et al. (2021) Prolonged SARS-CoV-2 positivity in immunocompetent patients: virus isolation, genomic integrity, and transmission risk, Microbiol. Spectr., 9, e0085521, doi: 10.1128/Spectrum.00855-21.
  71. Wang, Q., Ye, S. B., Zhou, Z. J., Li, J. Y., Lv, J. Z., Hu, B., Yuan, S., Qiu, Y., and Ge, X. Y. (2023) Key mutations on spike protein altering ACE2 receptor utilization and potentially expanding host range of emerging SARS-CoV-2 variants, J. Med. Virol., 95, e28116, doi: 10.1002/jmv.28116.
  72. Shu, C. J., Huang, X., Tang, H. H., Mo, D. D., Zhou, J. W., and Deng, C. (2021) Mutations in spike protein and allele variations in ACE2 impact targeted therapy strategies against SARS-CoV-2, Zool. Res., 42, 170-181, doi: 10.24272/ j.issn.2095-8137.2020.301.
  73. Erausquin, E., Glaser, F., Fernandez-Recio, J., and Lopez-Sagaseta, J. (2022) Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution, Acta Crystallogr. D Struct. Biol., 78, 1156-1170, doi: 10.1107/S2059798322007677.
  74. Shah, M., and Woo, H. G. (2021) Omicron: a heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies, Front. Immunol., 12, 830527, doi: 10.3389/ fimmu.2021.830527.
  75. Huang, C., Yang, Y., Yang, P., Wang, F., Li, X., Song, X., Wang, Y., Yu, C., Wang, X., and Wang, S. (2022) A robust reporting system for measurement of SARS-CoV-2 spike fusion efficiency, Signal. Transduct. Target Ther., 7, 179, doi: 10.1038/s41392-022-01037-4.
  76. McMahan, K., Giffin, V., Tostanoski, L. H., Chung, B., Siamatu, M., Suthar, M. S., Halfmann, P., Kawaoka, Y., Piedra-Mora, C., Jain, N., Ducat, S., Kar, S., Andersen, H., Lewis, M. G., Martinot, A. J., and Barouch, D. H. (2022) Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters, Med, 3, 262-268.e264, doi: 10.1016/ j.medj.2022.03.004.
  77. Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P. D., Graham, B. S., Mascola, J. R., Chang, J. Y., Yin, M. T., Sobieszczyk, M., Kyratsous, C. A., Shapiro, L., Sheng, Z., Huang, Y., and Ho, D. D. (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7, Nature, 593, 130-135, doi: 10.1038/ s41586-021-03398-2.
  78. Singh, A., Steinkellner, G., Kochl, K., Gruber, K., and Gruber, C. C. (2021) Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2, Sci. Rep., 11, 4320, doi: 10.1038/s41598- 021-83761-5.
  79. Mondeali, M., Etemadi, A., Barkhordari, K., Mobini Kesheh, M., Shavandi, S., Bahavar, A., Tabatabaie, F. H., Mahmoudi Gomari, M., and Modarressi, M. H. (2023) The role of S477N mutation in the molecular behavior of SARS-CoV-2 spike protein: an in silico perspective, J. Cell Biochem., 124, 308-319, doi: 10.1002/jcb.30367.
  80. Zhao, H., Lu, L., Peng, Z., Chen, L. L., Meng, X., Zhang, C., Ip, J. D., Chan, W. M., Chu, A. W., Chan, K. H., Jin, D. Y., Chen, H., Yuen, K. Y., and To, K. K. (2022) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells, Emerg. Microbes Infect., 11, 277-283, doi: 10.1080/22221751.2021.2023329.
  81. Starr, T. N., Greaney, A. J., Stewart, C. M., Walls, A. C., Hannon, W. W., Veesler, D., and Bloom, J. D. (2022) Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains, PLoS Pathog., 18, e1010951, doi: 10.1371/journal.ppat.1010951.
  82. Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., Yu, Y., Wang, P., Zhang, Z., Liu, P., An, R., Hao, X., Wang, Y., Wang, J., Feng, R., Sun, H., et al. (2022) BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection, Nature, 608, 593-602, doi: 10.1038/s41586-022-04980-y.
  83. Garcia-Beltran, W. F., Lam, E. C., St Denis, K., Nitido, A. D., Garcia, Z. H., Hauser, B. M., Feldman, J., Pavlovic, M. N., Gregory, D. J., Poznansky, M. C., Sigal, A., Schmidt, A. G., Iafrate, A. J., Naranbhai, V., and Balazs, A. B. (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell, 184, 2372-2383.e2379, doi: 10.1016/j.cell.2021.03.013.
  84. Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R., Chen, X., Zhang, N., Wang, Y., Wang, P., Zhao, L., Sun, H., Yu, L., Yang, S., Niu, X., Xiao, T., Gu, Q., Shao, F., et al. (2023) Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution, Nature, 614, 521-529, doi: 10.1038/s41586-022-05644-7.
  85. Kaku, C. I., Starr, T. N., Zhou, P., Dugan, H. L., Khalife, P., Song, G., Champney, E. R., Mielcarz, D. W., Geoghegan, J. C., Burton, D. R., Raiees, A., Bloom, J. D., and Walker, L. M. (2022) Evolution of antibody immunity following Omicron BA.1 breakthrough infection, bioRxiv, doi: 10.1101/2022.09.21.508922.
  86. Alsoussi, W. B., Malladi, S. K., Zhou, J. Q., Liu, Z., Ying, B., Kim, W., Schmitz, A. J., Lei, T., Horvath, S. C., Sturtz, A. J., McIntire, K. M., Evavold, B., Han, F., Scheaffer, S. M., Fox, I. F., Mirza, S. F., Parra-Rodriguez, L., Nachbagauer, R., Nestorova, B., Chalkias, S., et al. (2023) SARS-CoV-2 Omicron boosting induces de novo B cell response in humans, Nature, 617, 592-598, doi: 10.1038/s41586-023-06025-4.
  87. Van der Made, C. I., Netea, M. G., van der Veerdonk, F. L., and Hoischen, A. (2022) Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19, Genome Med., 14, 96, doi: 10.1186/s13073- 022-01100-3.
  88. Nhung, V. P., Ton, N. D., Ngoc, T. T. B., Thuong, M. T. H., Hai, N. T. T., Oanh, K. T. P., Hien, L. T. T., Thach, P. N., Hai, N. V., and Ha, N. H. (2022) Host genetic risk factors associated with COVID-19 susceptibility and severity in Vietnamese, Genes (Basel), 13, 1884, doi: 10.3390/genes13101884.
  89. Pietzner, M., Chua, R. L., Wheeler, E., Jechow, K., Willett, J. D. S., Radbruch, H., Trump, S., Heidecker, B., Zeberg, H., Heppner, F. L., Eils, R., Mall, M. A., Richards, J. B., Sander, L. E., Lehmann, I., Lukassen, S., Wareham, N. J., Conrad, C., and Langenberg, C. (2022) ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19, Nat. Commun., 13, 4484, doi: 10.1038/s41467-022-31999-6.
  90. Smatti, M. K., Alkhatib, H. A., Al Thani, A. A., and Yassine, H. M. (2022) Will host genetics affect the response to SARS-CoV-2 vaccines? Historical precedents, Front. Med. (Lausanne), 9, 802312, doi: 10.3389/fmed.2022.802312.
  91. Cappadona, C., Rimoldi, V., Paraboschi, E. M., and Asselta, R. (2023) Genetic susceptibility to severe COVID-19, Infect. Genet. Evol., 110, 105426, doi: 10.1016/j.meegid.2023.105426.
  92. Delanghe, J. R., and Speeckaert, M. M. (2022) Host polymorphisms and COVID-19 infection, Adv Clin Chem, 107, 41-77, doi: 10.1016/bs.acc.2021.07.002.
  93. Andolfo, I., Russo, R., Lasorsa, V. A., Cantalupo, S., Rosato, B. E., Bonfiglio, F., Frisso, G., Abete, P., Cassese, G. M., Servillo, G., Esposito, G., Gentile, I., Piscopo, C., Villani, R., Fiorentino, G., Cerino, P., Buonerba, C., Pierri, B., Zollo, M., Iolascon, A., et al. (2021) Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19, iScience, 24, 102322, doi: 10.1016/j.isci.2021.102322.
  94. Zguro, K., Fallerini, C., Fava, F., Furini, S., and Renieri, A. (2022) Host genetic basis of COVID-19: from methodologies to genes, Eur. J. Hum. Genet., 30, 899-907, doi: 10.1038/s41431-022-01121-x.
  95. Verma, A., Minnier, J., Wan, E. S., Huffman, J. E., Gao, L., Joseph, J., Ho, Y. L., Wu, W. C., Cho, K., Gorman, B. R., Rajeevan, N., Pyarajan, S., Garcon, H., Meigs, J. B., Sun, Y. V., Reaven, P. D., McGeary, J. E., Suzuki, A., Gelernter, J., Lynch, J. A., et al. (2022) A MUC5B gene polymorphism, rs35705950-T, confers protective effects against COVID-19 hospitalization but not severe disease or mortality, Am. J. Respir. Crit. Care Med., 206, 1220-1229, doi: 10.1164/ rccm.202109-2166OC.
  96. Arnold, C. G., Konigsberg, I., Adams, J. Y., Sharma, S., Aggarwal, N., Hopkinson, A., Vest, A., Campbell, M., Boorgula, M., Yang, I., Gignoux, C., Barnes, K. C., and Monte, A. A. (2022) Epigenetics may characterize asymptomatic COVID-19 infection, Hum. Genomics, 16, 27, doi: 10.1186/s40246-022-00401-3.
  97. Zietz, M., Zucker, J., and Tatonetti, N. P. (2020) Associations between blood type and COVID-19 infection, intubation, and death, Nat. Commun., 11, 5761, doi: 10.1038/s41467-020-19623-x.
  98. Franchini, M., Capra, F., Targher, G., Montagnana, M., and Lippi, G. (2007) Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications, Thromb. J., 5, 14, doi: 10.1186/ 1477-9560-5-14.
  99. Wu, S. C., Arthur, C. M., Jan, H. M., Garcia-Beltran, W. F., Patel, K. R., Rathgeber, M. F., Verkerke, H. P., Cheedarla, N., Jajosky, R. P., Paul, A., Neish, A. S., Roback, J. D., Josephson, C. D., Wesemann, D. R., Kalman, D., Rakoff-Nahoum, S., Cummings, R. D., and Stowell, S. R. (2023) Blood group A enhances SARS-CoV-2 infection, Blood, 142, 742-747, doi: 10.1182/blood.2022018903.
  100. MacGowan, S. A., Barton, M. I., Kutuzov, M., Dushek, O., van der Merwe, P. A., and Barton, G. J. (2022) Missense variants in human ACE2 strongly affect binding to SARS-CoV-2 Spike providing a mechanism for ACE2 mediated genetic risk in Covid-19: A case study in affinity predictions of interface variants, PLoS Comput. Biol., 18, e1009922, doi: 10.1371/journal.pcbi.1009922.
  101. Chen, F., Zhang, Y., Li, X., Li, W., Liu, X., and Xue, X. (2021) The impact of ACE2 polymorphisms on COVID-19 disease: susceptibility, severity, and therapy, Front. Cell. Infect. Microbiol., 11, 753721, doi: 10.3389/fcimb.2021.753721.
  102. Hattori, T., Saito, T., Okuya, K., Takahashi, Y., Miyamoto, H., Kajihara, M., Igarashi, M., and Takada, A. (2022) Human ACE2 genetic polymorphism affecting SARS-CoV and SARS-CoV-2 entry into cells, Microbiol. Spectr., 10, e0087022, doi: 10.1128/spectrum.00870-22.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The mechanism of entry and exit of the SARS-CoV/SARS-CoV-2 virus into the cell. The first stage of interaction involves recognition of the S protein of the virus by the ACE2 receptor (1), the second stage can differ and go either along the membrane fusion pathway (2 A) or along the endosome formation pathway (2 B). Endosomes can fuse with lysosomes containing cathepsin L and B and other proteases, which ensures the cleavage of the S protein and further fusion of the endosome membrane and the virus (3). The release of viral RNA into the cytosol leads to the translation of viral polymerase and other viral proteins (4), assembly and release of virions (5). Both the spike protein and ACE2 can be targets for proteases, when the so-called shedding of the extracellular domain of ACE2 from the cell surface occurs (compiled according to [7–10])

Download (525KB)
3. Fig. 2. Schematic representation of the formation of a multinuclear syncytium during infection of cells with SARS-CoV-2. The entry of the virus into cells is triggered by the interaction between the S protein of the virus and the ACE2 receptor of the cell (1). The appearance of the S protein on the plasma membrane occurs during the fusion of the virion with the cell (2A) or during infection via the endosomal pathway (2B). In this case, due to the low pH in the endosome, proteolytic cleavage of the S protein (3), release of the genome, its replication and synthesis of viral proteins in the endoplasmic reticulum (4) occur. Part of the S protein, due to its structural features, is transported and integrated into the plasma membrane. Thus, the presence of ACE2 and S protein fusion molecules on the membranes of neighboring cells promotes their fusion (5). Abbreviations: ACE2 – angiotensin-converting enzyme 2, TMPRSS2 – transmembrane serine protease 2

Download (305KB)
4. Fig. 3. Schematic representation of the mutual activation of immune cells during SARS-CoV-2 infection. The innate immune response is activated within a few hours after infection with the virus and is accompanied by the release of a number of antiviral molecules. APCs (macrophages, dendritic cells and, to some extent, granulocytes) phagocytose the pathogen, fragment it into small peptides, which are presented on their surface using the major histocompatibility complex class II (MHC-II). The interaction of MHC-II and the T cell receptor activates CD4+ T helper cells, as well as B and CD8+ cells. Activation of T helper cells leads to their differentiation into various subtypes with specific functions mediated by cytokine secretion and cell-to-cell contacts. B cells that differentiate into plasma cells secrete antibodies that prevent the viral particle from penetrating healthy cells. Th2 lymphocytes contribute to the implementation of the humoral response by providing a second signal to B cells, mainly due to the secretion of IL-4 and the CD40/CD40L interaction. Some CD4+ cells become follicular helper cells (Tfh), which regulate important interactions in the germinal centers required for the maturation of memory B cells and long-lived high-affinity antibody-producing plasma cells. Another pool of CD4+ T cells differentiates into a pool of memory T helper cells (Tmem). Th1 play a critical role in the formation of a cellular response. They initiate the activation of MHC-I CD8+ cytotoxic T lymphocytes (Teff), simultaneously interacting with APCs. Activated Teff induce apoptosis of cells infected with the SARS-CoV-2 virus. Some Teff differentiate into cytotoxic memory T cells (Tem), which are responsible for rapid restoration of the cellular immune response upon secondary contacts with the antigen. A similar mechanism of destruction occurs when NK cells interact with a virus-infected cell. However, excessive activation of immune cells leads to a decrease in the number of lymphocytes due to cell death, moreover, lymphocytes often exhibit an exhaustion phenotype with the expression of higher levels of exhaustion markers PD-1, Tim-3 or NKG2A. Abbreviations: Act – activation, PS – signal transduction, CoS – costimulation, Ex – expression

Download (523KB)
5. Fig. 4. Schematic representation of the development of hyperinflammation and cytokine release syndrome in severe COVID-19. SARS-CoV-2 infects epithelial and immune cells, causing tissue damage and the release of inflammatory cytokines IL-1, IL-6, IL-12, and TNF-α. Viral antigens and inflammatory cytokines recruit innate immune cells (monocytes, macrophages, neutrophils, dendritic and NK cells) to the site of inflammation and activate adaptive immune cells (CD4+ and CD8+ T cells), inducing myelopoiesis and granulopoiesis, as well as sustained production of excessive circulating cytokines, which further exacerbate epithelial damage. Immunopathological manifestations of COVID-19 include lymphopenia, monocyte and macrophage dysregulation, neutrophilia, ADE, decreased or delayed IFN-I, and development of CRS. Peripheral monocytes show a phenotype shift from CD16+ to CD14+, and the number of macrophages released into BAL increases due to their migration from the blood to the lungs. Decreased or delayed IFN-I hampers viral clearance and causes paradoxical hyperintensity inflammation, resulting in a worse prognosis in patients with COVID-19. Excessive production of systemic cytokines induces macrophage activation and hemophagocytic lymphohistiocytosis, resulting in anemia, and also causes impaired vascular hemostasis, leading to capillary leak syndrome, thrombosis, and intravascular coagulation syndrome. Together, these events lead to acute respiratory distress syndrome, multiple organ failure, and death (adapted from [61–63]). Abbreviation: ARDS – acute respiratory distress syndrome

Download (448KB)
6. Fig. 5. Amino acid substitutions in the SARS-CoV-2 spike protein that affect the virus's transmissibility and ability to evade the immune response. (Data references are given in the text)

Download (331KB)
7. Appendix. Table P1. Receptors, membrane, endosomal and secreted proteins of the human body interacting with SARS-CoV-2
Download (261KB)

Copyright (c) 2024 Russian Academy of Sciences