Human Blood Serum Antagonizes Effects of EGFR/HER2-Targeted Drug Lapatinib on Squamous Carcinoma SK-BR-3 Cell Growth and Gene Expression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond on it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes lapatinib inhibition of growth of human breast squamous carcinoma SK-BR-3 cell line. This antagonism between lapatinib and human serum was connected with cancel of drug induced G1/S cell cycle transition arrest. RNA sequencing revealed 308 differentially expressed genes in the presence of lapatinib. Remarkably, when combined with lapatinib, human blood serum showed the capacity of restoring both the rate of cell growth, and the expression of 96.1% of genes that were altered by lapatinib treatment alone. EGF co-administration with lapatinib also restores the cell growth and cancels alteration of 95.8% of genes specific to lapatinib treatment of SK-BR-3 cells. Differential gene expression analysis also showed that in the presence of human serum or EGF, lapatinib was unable to inhibit Toll Like Receptor signaling pathway and alter expression of genes linked with Gene Ontology term of Focal adhesion.

Full Text

Restricted Access

About the authors

N. A. Shaban

Moscow Institute of Physics and Technology; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; The National Medical Research Center for Endocrinology

Email: dkamashev@gmail.com
Russian Federation, Dolgoprudny; Moscow; Moscow

M. M. Raevskiy

Sechenov First Moscow State Medical University

Email: dkamashev@gmail.com
Russian Federation, Moscow

G. S. Zakharova

Sechenov First Moscow State Medical University

Email: dkamashev@gmail.com
Russian Federation, Moscow

V. O. Shipunova

Moscow Institute of Physics and Technology; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: dkamashev@gmail.com
Russian Federation, Dolgoprudny; Moscow

S. M. Deyev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Kazan Federal University

Email: dkamashev@gmail.com
Russian Federation, Moscow; Kazan

M. V. Suntsova

The National Medical Research Center for Endocrinology; Sechenov First Moscow State Medical University

Email: dkamashev@gmail.com
Russian Federation, Moscow; Moscow

M. I. Sorokin

Moscow Institute of Physics and Technology; Sechenov First Moscow State Medical University; European Organization for Research and Treatment of Cancer (EORTC)

Email: dkamashev@gmail.com
Russian Federation, Moscow; Moscow; Brussels, Belgium

A. A. Buzdin

Moscow Institute of Physics and Technology; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; The National Medical Research Center for Endocrinology; Sechenov First Moscow State Medical University

Email: dkamashev@gmail.com
Russian Federation, Dolgoprudny; Moscow; Moscow; Moscow

D. E. Kamashev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; The National Medical Research Center for Endocrinology; Sechenov First Moscow State Medical University

Author for correspondence.
Email: dkamashev@gmail.com
Russian Federation, Moscow; Moscow; Moscow

References

  1. Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N. E. (2000) The ErbB signaling network: receptor heterodimerization in development and cancer, EMBO J., 19, 3159-3167, https://doi.org/10.1093/emboj/19.13.3159.
  2. Holbro, T., and Hynes, N. E. (2004) ErbB receptors: directing key signaling networks throughout life, Annu. Rev. Pharmacol. Toxicol., 44, 195-217, https://doi.org/10.1146/annurev.pharmtox.44.101802.121440.
  3. Roskoski, R., Jr. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer, Pharmacol. Res., 79, 34-74, https://doi.org/10.1016/j.phrs.2013.11.002.
  4. Arienti, C., Pignatta, S., and Tesei, A. (2019) Epidermal growth factor receptor family and its role in gastric cancer, Front. Oncol., 9, 1308, https://doi.org/10.3389/fonc.2019.01308.
  5. Iqbal, N., and Iqbal, N. (2014) Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications, Mol. Biol. Int., 2014, 852748, https://doi.org/10.1155/2014/852748.
  6. Komurasaki, T., Toyoda, H., Uchida, D., and Nemoto, N. (2002) Mechanism of growth promoting activity of epiregulin in primary cultures of rat hepatocytes, Growth Factors, 20, 61-69, https://doi.org/10.1080/08977190290024192.
  7. Yamaoka, T., Kusumoto, S., Ando, K., Ohba, M., and Ohmori, T. (2018) Receptor tyrosine kinase-targeted cancer therapy, Int. J. Mol. Sci., 19, 3491, https://doi.org/10.3390/ijms19113491.
  8. Miricescu, D., Totan, A., Stanescu, S., II, Badoiu, S. C., Stefani, C., and Greabu, M. (2020) PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects, Int. J. Mol. Sci., 22, 173, https:// doi.org/10.3390/ijms22010173.
  9. Bragin, P. E., Mineev, K. S., Bocharova, O. V., Volynsky, P. E., Bocharov, E. V., and Arseniev, A. S. (2016) HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane regions, J. Mol. Biol., 428, 52-61, https://doi.org/10.1016/j.jmb.2015.11.007.
  10. Yarden, Y. (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities, Eur. J. Cancer, 37, S3-S8, https://doi.org/10.1016/s0959-8049(01)00230-1.
  11. Shaban, N., Kamashev, D., Emelianova, A., and Buzdin, A. (2023) Targeted inhibitors of EGFR: structure, biology, biomarkers, and clinical applications, Cells, 13, 47, https://doi.org/10.3390/cells13010047.
  12. Neve, R. M., Lane, H. A., and Hynes, N. E. (2001) The role of overexpressed HER2 in transformation, Ann. Oncol., 12, S9-S13, https://doi.org/10.1093/annonc/12.suppl_1.s9.
  13. Cai, X., Zhang, L., and Chen, S. (2022) Editorial: cancer treatment and early detection targeting HER receptors, Front. Mol. Biosci., 9, 940055, https://doi.org/10.3389/fmolb.2022.940055.
  14. Maadi, H., Nami, B., Tong, J., Li, G., and Wang, Z. (2018) The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2, BMC Cancer, 18, 238, https://doi.org/10.1186/s12885-018-4143-x.
  15. Peckys, D. B., Korf, U., and de Jonge, N. (2015) Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy, Sci Adv, 1, e1500165, https://doi.org/10.1126/sciadv.1500165.
  16. Owens, M. A., Horten, B. C., and Da Silva, M. M. (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues, Clin. Breast Cancer, 5, 63-69, https://doi.org/10.3816/cbc.2004.n.011.
  17. Yuan, Y., Liu, X., Cai, Y., and Li, W. (2022) Lapatinib and lapatinib plus trastuzumab therapy versus trastuzumab therapy for HER2 positive breast cancer patients: an updated systematic review and meta-analysis, Syst. Rev., 11, 264, https://doi.org/10.1186/s13643-022-02134-9.
  18. Kim, H. P., Yoon, Y. K., Kim, J. W., Han, S. W., Hur, H. S., Park, J., Lee, J. H., Oh, D. Y., Im, S. A., Bang, Y. J., and Kim, T. Y. (2009) Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2, PLoS One, 4, e5933, https://doi.org/10.1371/journal.pone.0005933.
  19. Gril, B., Palmieri, D., Bronder, J. L., Herring, J. M., Vega-Valle, E., Feigenbaum, L., Liewehr, D. J., Steinberg, S. M., Merino, M. J., Rubin, S. D., and Steeg, P. S. (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain, J. Natl. Cancer Inst., 100, 1092-1103, https://doi.org/10.1093/jnci/djn216.
  20. Bilancia, D., Rosati, G., Dinota, A., Germano, D., Romano, R., and Manzione, L. (2007) Lapatinib in breast cancer, Ann. Oncol., 18, vi26-vi30, https://doi.org/10.1093/annonc/mdm220.
  21. Figueroa-Magalhaes, M. C., Jelovac, D., Connolly, R., and Wolff, A. C. (2014) Treatment of HER2-positive breast cancer, Breast, 23, 128-136, https://doi.org/10.1016/j.breast.2013.11.011.
  22. Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., Gianni, L., Baselga, J., Bell, R., Jackisch, C., Cameron, D., Dowsett, M., Barrios, C. H., Steger, G., Huang, C. S., Andersson, M., Inbar, M., Lichinitser, M., Lang, I., Nitz, U., et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer, N. Engl. J. Med., 353, 1659-1672, https://doi.org/10.1056/NEJMoa052306.
  23. Slamon, D., Eiermann, W., Robert, N., Pienkowski, T., Martin, M., Press, M., Mackey, J., Glaspy, J., Chan, A., Pawlicki, M., Pinter, T., Valero, V., Liu, M. C., Sauter, G., von Minckwitz, G., Visco, F., Bee, V., Buyse, M., Bendahmane, B., Tabah-Fisch, I., et al. (2011) Adjuvant trastuzumab in HER2-positive breast cancer, N. Engl. J. Med., 365, 1273-1283, https://doi.org/10.1056/NEJMoa0910383.
  24. Vu, T., and Claret, F. X. (2012) Trastuzumab: updated mechanisms of action and resistance in breast cancer, Front. Oncol., 2, 62, https://doi.org/10.3389/fonc.2012.00062.
  25. Wang, Z. H., Zheng, Z. Q., Jia, S. C., Liu, S. N., Xiao, X. F., Chen, G. Y., Liang, W. Q., and Lu, X. F. (2022) Trastuzumab resistance in HER2-positive breast cancer: mechanisms, emerging biomarkers and targeting agents, Front. Oncol., 12, 1006429, https://doi.org/10.3389/fonc.2022.1006429.
  26. Amir, E., Ocana, A., Seruga, B., Freedman, O., and Clemons, M. (2010) Lapatinib and HER2 status: results of a meta-analysis of randomized phase III trials in metastatic breast cancer, Cancer Treat. Rev., 36, 410-415, https:// doi.org/10.1016/j.ctrv.2009.12.012.
  27. Kaufman, B., Trudeau, M., Awada, A., Blackwell, K., Bachelot, T., Salazar, V., DeSilvio, M., Westlund, R., Zaks, T., Spector, N., and Johnston, S. (2009) Lapatinib monotherapy in patients with HER2-overexpressing relapsed or refractory inflammatory breast cancer: final results and survival of the expanded HER2+ cohort in EGF103009, a phase II study, Lancet Oncol., 10, 581-588, https://doi.org/10.1016/S1470-2045(09)70087-7.
  28. Gaibar, M., Beltran, L., Romero-Lorca, A., Fernandez-Santander, A., and Novillo, A. (2020) Somatic mutations in HER2 and implications for current treatment paradigms in HER2-positive breast cancer, J. Oncol., 2020, 6375956, https://doi.org/10.1155/2020/6375956.
  29. Bao, S., Chen, Y., Yang, F., Sun, C., Yang, M., Li, W., Huang, X., Li, J., Wu, H., and Yin, Y. (2020) Screening and identification of key biomarkers in acquired lapatinib-resistant breast cancer, Front. Pharmacol., 11, 577150, https:// doi.org/10.3389/fphar.2020.577150.
  30. Havaleshko, D. M., Smith, S. C., Cho, H., Cheon, S., Owens, C. R., Lee, J. K., Liotta, L. A., Espina, V., Wulfkuhle, J. D., Petricoin, E. F., and Theodorescu, D. (2009) Comparison of global versus epidermal growth factor receptor pathway profiling for prediction of lapatinib sensitivity in bladder cancer, Neoplasia, 11, 1185-1193, https://doi.org/10.1593/neo.09898.
  31. Von der Heyde, S., Wagner, S., Czerny, A., Nietert, M., Ludewig, F., Salinas-Riester, G., Arlt, D., and Beissbarth, T. (2015) mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer, PLoS One, 10, e0117818, https://doi.org/10.1371/journal.pone.0117818.
  32. Triulzi, T., De Cecco, L., Sandri, M., Prat, A., Giussani, M., Paolini, B., Carcangiu, M. L., Canevari, S., Bottini, A., Balsari, A., Menard, S., Generali, D., Campiglio, M., Di Cosimo, S., and Tagliabue, E. (2015) Whole-transcriptome analysis links trastuzumab sensitivity of breast tumors to both HER2 dependence and immune cell infiltration, Oncotarget, 6, 28173-28182, https://doi.org/10.18632/oncotarget.4405.
  33. Taguchi, F., Solomon, B., Gregorc, V., Roder, H., Gray, R., Kasahara, K., Nishio, M., Brahmer, J., Spreafico, A., Ludovini, V., Massion, P. P., Dziadziuszko, R., Schiller, J., Grigorieva, J., Tsypin, M., Hunsucker, S. W., Caprioli, R., Duncan, M. W., Hirsch, F. R., Bunn, P. A., Jr., and Carbone, D. P. (2007) Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study, J. Natl. Cancer Inst., 99, 838-846, https://doi.org/10.1093/ jnci/djk195.
  34. Yang, T., Fu, Z., Zhang, Y., Wang, M., Mao, C., and Ge, W. (2020) Serum proteomics analysis of candidate predictive biomarker panel for the diagnosis of trastuzumab-based therapy resistant breast cancer, Biomed. Pharmacother., 129, 110465, https://doi.org/10.1016/j.biopha.2020.110465.
  35. Ishikawa, N., Daigo, Y., Takano, A., Taniwaki, M., Kato, T., Hayama, S., Murakami, H., Takeshima, Y., Inai, K., Nishimura, H., Tsuchiya, E., Kohno, N., and Nakamura, Y. (2005) Increases of amphiregulin and transforming growth factor-alpha in serum as predictors of poor response to gefitinib among patients with advanced non-small cell lung cancers, Cancer Res., 65, 9176-9184, https://doi.org/10.1158/0008-5472.CAN-05-1556.
  36. Tas, F., Karabulut, S., Serilmez, M., Ciftci, R., and Duranyildiz, D. (2014) Increased serum level of epidermal growth factor receptor (EGFR) is associated with poor progression-free survival in patients with epithelial ovarian cancer, Cancer Chemother. Pharmacol., 73, 631-637, https://doi.org/10.1007/s00280-014-2396-x.
  37. Loupakis, F., Cremolini, C., Fioravanti, A., Orlandi, P., Salvatore, L., Masi, G., Schirripa, M., Di Desidero, T., Antoniotti, C., Canu, B., Faviana, P., Sensi, E., Lupi, C., Fontanini, G., Basolo, F., Di Paolo, A., Danesi, R., Falcone, A., and Bocci, G. (2014) EGFR ligands as pharmacodynamic biomarkers in metastatic colorectal cancer patients treated with cetuximab and irinotecan, Target Oncol., 9, 205-214, https://doi.org/10.1007/s11523-013-0284-7.
  38. Wilson, T. R., Fridlyand, J., Yan, Y., Penuel, E., Burton, L., Chan, E., Peng, J., Lin, E., Wang, Y., Sosman, J., Ribas, A., Li, J., Moffat, J., Sutherlin, D. P., Koeppen, H., Merchant, M., Neve, R., and Settleman, J. (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors, Nature, 487, 505-509, https://doi.org/10.1038/nature11249.
  39. Claus, J., Patel, G., Autore, F., Colomba, A., Weitsman, G., Soliman, T. N., Roberts, S., Zanetti-Domingues, L. C., Hirsch, M., Collu, F., George, R., Ortiz-Zapater, E., Barber, P. R., Vojnovic, B., Yarden, Y., Martin-Fernandez, M. L., Cameron, A., Fraternali, F., Ng, T., and Parker, P. J. (2018) Inhibitor-induced HER2-HER3 heterodimerisation promotes proliferation through a novel dimer interface, Elife, 7, e32271, https://doi.org/10.7554/eLife.32271.
  40. Wang, X., Wong, J., Sevinsky, C. J., Kokabee, L., Khan, F., Sun, Y., and Conklin, D. S. (2016) Bruton’s tyrosine kinase inhibitors prevent therapeutic escape in breast cancer cells, Mol. Cancer Ther., 15, 2198-2208, https:// doi.org/10.1158/1535-7163.MCT-15-0813.
  41. Kamashev, D., Sorokin, M., Kochergina, I., Drobyshev, A., Vladimirova, U., Zolotovskaia, M., Vorotnikov, I., Shaban, N., Raevskiy, M., Kuzmin, D., and Buzdin, A. (2021) Human blood serum can donor-specifically antagonize effects of EGFR-targeted drugs on squamous carcinoma cell growth, Heliyon, 7, e06394, https://doi.org/10.1016/ j.heliyon.2021.e06394.
  42. Kamashev, D., Shaban, N., Suntsova, M., Raevskiy, M., Efimov, V., Moisseev, A., Sorokin, M., and Buzdin, A. (2022) Human blood serum inhibits ductal carcinoma cells BT474 growth and modulates effect of HER2 inhibition, Biomedicines, 10, 1914, https://doi.org/10.3390/biomedicines10081914.
  43. Suntsova, M., Gaifullin, N., Allina, D., Reshetun, A., Li, X., Mendeleeva, L., Surin, V., Sergeeva, A., Spirin, P., Prassolov, V., Morgan, A., Garazha, A., Sorokin, M., and Buzdin, A. (2019) Atlas of RNA sequencing profiles for normal human tissues, Sci. Data, 6, 36, https://doi.org/10.1038/s41597-019-0043-4.
  44. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, https://doi.org/10.1186/s13059-014-0550-8.
  45. Jung, S., Appleton, E., Ali, M., Church, G. M., and Del Sol, A. (2021) A computer-guided design tool to increase the efficiency of cellular conversions, Nat. Commun., 12, 1659, https://doi.org/10.1038/s41467-021-21801-4.
  46. Zolotovskaia, M. A., Tkachev, V. S., Guryanova, A. A., Simonov, A. M., Raevskiy, M. M., Efimov, V. V., Wang, Y., Sekacheva, M. I., Garazha, A. V., Borisov, N. M., Kuzmin, D. V., Sorokin, M. I., and Buzdin, A. A. (2022) OncoboxPD: human 51 672 molecular pathways database with tools for activity calculating and visualization, Comput. Struct. Biotechnol. J., 20, 2280-2291, https://doi.org/10.1016/j.csbj.2022.05.006.
  47. Sorokin, M., Borisov, N., Kuzmin, D., Gudkov, A., Zolotovskaia, M., Garazha, A., and Buzdin, A. (2021) Algorithmic Annotation of functional roles for components of 3,044 human molecular pathways, Front. Genet., 12, 617059, https://doi.org/10.3389/fgene.2021.617059.
  48. Raevskiy, M., Sorokin, M., Zakharova, G., Tkachev, V., Borisov, N., Kuzmin, D., Kremenchutckaya, K., Gudkov, A., Kamashev, D., and Buzdin, A. (2022) Better agreement of human transcriptomic and proteomic cancer expression data at the molecular pathway activation level, Int. J. Mol. Sci., 23, 2611, https://doi.org/10.3390/ijms23052611.
  49. Borisov, N., Sorokin, M., Garazha, A., and Buzdin, A. (2020) Quantitation of molecular pathway activation using RNA sequencing data, Methods Mol. Biol., 2063, 189-206, https://doi.org/10.1007/978-1-0716-0138-9_15.
  50. Henjes, F., Bender, C., von der Heyde, S., Braun, L., Mannsperger, H. A., Schmidt, C., Wiemann, S., Hasmann, M., Aulmann, S., Beissbarth, T., and Korf, U. (2012) Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs, Oncogenesis, 1, e16, https://doi.org/ 10.1038/oncsis.2012.16.
  51. Conlon, N. T., Kooijman, J. J., van Gerwen, S. J. C., Mulder, W. R., Zaman, G. J. R., Diala, I., Eli, L. D., Lalani, A. S., Crown, J., and Collins, D. M. (2021) Comparative analysis of drug response and gene profiling of HER2- targeted tyrosine kinase inhibitors, Br. J. Cancer, 124, 1249-1259, https://doi.org/10.1038/s41416-020-01257-x.
  52. Costantini, D. L., Bateman, K., McLarty, K., Vallis, K. A., and Reilly, R. M. (2008) Trastuzumab-resistant breast cancer cells remain sensitive to the auger electron-emitting radiotherapeutic agent 111In-NLS-trastuzumab and are radiosensitized by methotrexate, J. Nucl. Med., 49, 1498-1505, https://doi.org/10.2967/jnumed. 108.051771.
  53. Larson, J. S., Goodman, L. J., Tan, Y., Defazio-Eli, L., Paquet, A. C., Cook, J. W., Rivera, A., Frankson, K., Bose, J., Chen, L., Cheung, J., Shi, Y., Irwin, S., Kiss, L. D., Huang, W., Utter, S., Sherwood, T., Bates, M., Weidler, J., Parry, G., et al. (2010) Analytical validation of a highly quantitative, sensitive, accurate, and reproducible assay (HERmark) for the measurement of HER2 total protein and HER2 homodimers in FFPE breast cancer tumor specimens, Patholog. Res. Int., 2010, 814176, https://doi.org/10.4061/2010/814176.
  54. Sims, J. D., Taguiam, J. M., Alonso-Valenteen, F., Markman, J., Agadjanian, H., Chu, D., Lubow, J., Abrol, R., Srinivas, D., Jain, A., Han, B., Qu, Y., Mirzadehgan, P., Hwang, J. Y., Rentsendorj, A., Chung, A., Lester, J., Karlan, B. Y., Gray, H. B., Gross, Z., et al. (2018) Resistance to receptor-blocking therapies primes tumors as targets for HER3-homing nanobiologics, J. Control Release, 271, 127-138, https://doi.org/10.1016/j.jconrel.2017.12.024.
  55. Chang, Y., Park, K. H., Lee, J. E., and Han, K. C. (2018) Phosphoproteomic analysis reveals PAK2 as a therapeutic target for lapatinib resistance in HER2-positive breast cancer cells, Biochem. Biophys. Res. Commun., 505, 187-193, https://doi.org/10.1016/j.bbrc.2018.09.086.
  56. Yao, M., Shang, Y. Y., Zhou, Z. W., Yang, Y. X., Wu, Y. S., Guan, L. F., Wang, X. Y., Zhou, S. F., and Wei, X. (2017) The research on lapatinib in autophagy, cell cycle arrest and epithelial to mesenchymal transition via Wnt/ErK/PI3K-AKT signaling pathway in human cutaneous squamous cell carcinoma, J. Cancer, 8, 220-226, https://doi.org/ 10.7150/jca.16850.
  57. Abo-Zeid, M. A. M., Abo-Elfadl, M. T., and Gamal-Eldeen, A. M. (2019) Evaluation of lapatinib cytotoxicity and genotoxicity on MDA-MB-231 breast cancer cell line, Environ. Toxicol. Pharmacol., 71, 103207, https://doi.org/10.1016/ j.etap.2019.103207.
  58. Chou, T. C. (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies, Pharmacol. Rev., 58, 621-681, https://doi.org/10.1124/pr.58.3.10.
  59. Lemos-Gonzalez, Y., Rodriguez-Berrocal, F. J., Cordero, O. J., Gomez, C., and Paez de la Cadena, M. (2007) Alteration of the serum levels of the epidermal growth factor receptor and its ligands in patients with non-small cell lung cancer and head and neck carcinoma, Br. J. Cancer, 96, 1569-1578, https://doi.org/10.1038/sj.bjc.6603770.
  60. Fan, Z., Shang, B. Y., Lu, Y., Chou, J. L., and Mendelsohn, J. (1997) Reciprocal changes in p27(Kip1) and p21(Cip1) in growth inhibition mediated by blockade or overstimulation of epidermal growth factor receptors, Clin. Cancer Res., 3, 1943-1948.
  61. Kamashev, D., Shaban, N., Lebedev, T., Prassolov, V., Suntsova, M., Raevskiy, M., Gaifullin, N., Sekacheva, M., Garazha, A., Poddubskaya, E., Sorokin, M., and Buzdin, A. (2023) Human blood serum can diminish EGFR-targeted inhibition of squamous carcinoma cell growth through reactivation of MAPK and EGFR pathways, Cells, 12, 2022, https://doi.org/10.3390/cells12162022.
  62. Duhamel, S., Goyette, M. A., Thibault, M. P., Filion, D., Gaboury, L., and Cote, J. F. (2018) The E3 ubiquitin ligase HectD1 suppresses EMT and metastasis by targeting the +TIP ACF7 for degradation, Cell Rep., 22, 1016-1030, https://doi.org/10.1016/j.celrep.2017.12.096.
  63. Stemmler, M. P., Eccles, R. L., Brabletz, S., and Brabletz, T. (2019) Non-redundant functions of EMT transcription factors, Nat. Cell Biol., 21, 102-112, https://doi.org/10.1038/s41556-018-0196-y.
  64. Delghandi, M. P., Johannessen, M., and Moens, U. (2005) The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells, Cell Signal., 17, 1343-1351, https://doi.org/10.1016/j.cellsig.2005.02.003.
  65. Zhang, H., Kong, Q., Wang, J., Jiang, Y., and Hua, H. (2020) Complex roles of cAMP-PKA-CREB signaling in cancer, Exp. Hematol. Oncol., 9, 32, https://doi.org/10.1186/s40164-020-00191-1.
  66. Shcheblyakov, D. V., Logunov, D. Y., Tukhvatulin, A. I., Shmarov, M. M., Naroditsky, B. S., and Gintsburg, A. L. (2010) Toll-like receptors (TLRs): the role in tumor progression, Acta Naturae, 2, 21-29, https://doi.org/10.32607/ 20758251-2010-2-3-21-29.
  67. Urban-Wojciuk, Z., Khan, M. M., Oyler, B. L., Fahraeus, R., Marek-Trzonkowska, N., Nita-Lazar, A., Hupp, T. R., and Goodlett, D. R. (2019) The role of TLRs in anti-cancer immunity and tumor rejection, Front. Immunol., 10, 2388, https://doi.org/10.3389/fimmu.2019.02388.
  68. Yusuf, N. (2014) Toll-like receptor mediated regulation of breast cancer: a case of mixed blessings, Front. Immunol., 5, 224, https://doi.org/10.3389/fimmu.2014.00224.
  69. Ganjoo, K. N., and Wakelee, H. (2007) Review of erlotinib in the treatment of advanced non-small cell lung cancer, Biologics, 1, 335-346.
  70. Hsu, H. C., Thiam, T. K., Lu, Y. J., Yeh, C. Y., Tsai, W. S., You, J. F., Hung, H. Y., Tsai, C. N., Hsu, A., Chen, H. C., Chen, S. J., and Yang, T. S. (2016) Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients, Oncotarget, 7, 22257-22270, https://doi.org/10.18632/oncotarget.8076.
  71. Buzdin, A., Sorokin, M., Garazha, A., Glusker, A., Aleshin, A., Poddubskaya, E., Sekacheva, M., Kim, E., Gaifullin, N., Giese, A., Seryakov, A., Rumiantsev, P., Moshkovskii, S., and Moiseev, A. (2020) RNA sequencing for research and diagnostics in clinical oncology, Semin. Cancer Biol., 60, 311-323, https://doi.org/10.1016/j.semcancer.2019.07.010.
  72. Kim, E. L., Sorokin, M., Kantelhardt, S. R., Kalasauskas, D., Sprang, B., Fauss, J., Ringel, F., Garazha, A., Albert, E., Gaifullin, N., Hartmann, C., Naumann, N., Bikar, S. E., Giese, A., and Buzdin, A. (2020) Intratumoral heterogeneity and longitudinal changes in gene expression predict differential drug sensitivity in newly diagnosed and recurrent glioblastoma, Cancers (Basel), 12, 520, https://doi.org/10.3390/cancers12020520.
  73. Sorokin, M., Gorelyshev, A., Efimov, V., Zotova, E., Zolotovskaia, M., Rabushko, E., Kuzmin, D., Seryakov, A., Kamashev, D., Li, X., Poddubskaya, E., Suntsova, M., and Buzdin, A. (2021) RNA sequencing data for FFPE tumor blocks can be used for robust estimation of tumor mutation burden in individual biosamples, Front. Oncol., 11, 732644, https://doi.org/10.3389/fonc.2021.732644.
  74. Sorokin, M., Ignatev, K., Poddubskaya, E., Vladimirova, U., Gaifullin, N., Lantsov, D., Garazha, A., Allina, D., Suntsova, M., Barbara, V., and Buzdin, A. (2020) RNA sequencing in comparison to immunohistochemistry for measuring cancer biomarkers in breast cancer and lung cancer specimens, Biomedicines, 8, 114, https://doi.org/10.3390/ biomedicines8050114.
  75. Yonesaka, K., Takegawa, N., Satoh, T., Ueda, H., Yoshida, T., Takeda, M., Shimizu, T., Chiba, Y., Okamoto, I., Nishio, K., Tamura, T., and Nakagawa, K. (2015) Combined analysis of plasma amphiregulin and heregulin predicts response to cetuximab in metastatic colorectal cancer, PLoS One, 10, e0143132, https://doi.org/10.1371/journal.pone.0143132.
  76. Zolotovskaia, M. A., Tkachev, V. S., Seryakov, A. P., Kuzmin, D. V., Kamashev, D. E., Sorokin, M. I., Roumiantsev, S. A., and Buzdin, A. A. (2020) Mutation enrichment and transcriptomic activation signatures of 419 molecular pathways in cancer, Cancers (Basel), 12, 271, https://doi.org/10.3390/cancers12020271.
  77. Buzdin, A., Sorokin, M., Garazha, A., Sekacheva, M., Kim, E., Zhukov, N., Wang, Y., Li, X., Kar, S., Hartmann, C., Samii, A., Giese, A., and Borisov, N. (2018) Molecular pathway activation - New type of biomarkers for tumor morphology and personalized selection of target drugs, Semin. Cancer Biol., 53, 110-124, https://doi.org/10.1016/ j.semcancer.2018.06.003.
  78. Vladimirova, U., Rumiantsev, P., Zolotovskaia, M., Albert, E., Abrosimov, A., Slashchuk, K., Nikiforovich, P., Chukhacheva, O., Gaifullin, N., Suntsova, M., Zakharova, G., Glusker, A., Nikitin, D., Garazha, A., Li, X., Kamashev, D., Drobyshev, A., Kochergina-Nikitskaya, I., Sorokin, M., and Buzdin, A. (2021) DNA repair pathway activation features in follicular and papillary thyroid tumors, interrogated using 95 experimental RNA sequencing profiles, Heliyon, 7, e06408, https://doi.org/10.1016/j.heliyon.2021.e06408.
  79. Tang, L., Wang, Y., Strom, A., Gustafsson, J. A., and Guan, X. (2013) Lapatinib induces p27(Kip1)-dependent G(1) arrest through both transcriptional and post-translational mechanisms, Cell Cycle, 12, 2665-2674, https://doi.org/ 10.4161/cc.25728.
  80. Stuhlmiller, T. J., Miller, S. M., Zawistowski, J. S., Nakamura, K., Beltran, A. S., Duncan, J. S., Angus, S. P., Collins, K. A., Granger, D. A., Reuther, R. A., Graves, L. M., Gomez, S. M., Kuan, P. F., Parker, J. S., Chen, X., Sciaky, N., Carey, L. A., Earp, H. S., Jin, J., and Johnson, G. L. (2015) Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains, Cell Rep., 11, 390-404, https://doi.org/10.1016/j.celrep.2015.03.037.
  81. Zhou, H., Zhao, C., Shao, R., Xu, Y., and Zhao, W. (2023) The functions and regulatory pathways of S100A8/A9 and its receptors in cancers, Front. Pharmacol., 14, 1187741, https://doi.org/10.3389/fphar.2023.1187741.
  82. Tanigawa, K., Tsukamoto, S., Koma, Y. I., Kitamura, Y., Urakami, S., Shimizu, M., Fujikawa, M., Kodama, T., Nishio, M., Shigeoka, M., Kakeji, Y., and Yokozaki, H. (2022) S100A8/A9 induced by interaction with macrophages in esophageal squamous cell carcinoma promotes the migration and invasion of cancer cells via Akt and p38 MAPK pathways, Am. J. Pathol., 192, 536-552, https://doi.org/10.1016/j.ajpath.2021.12.002.
  83. Braams, E., and D’Angiolella, V. (2018) Keeping CDK18 in balance to prevent DNA replication stress in breast cancer, Oncotarget, 9, 37610-37611, https://doi.org/10.18632/oncotarget.26517.
  84. Dziobek, K., Oplawski, M., Grabarek, B., Zmarzly, N., Januszyk, P., Adwent, I., Dabrus, D., Lesniak, E., Kielbasinski, R., Kieszkowski, P., and Boron, D. (2019) Expression of semaphorin 3B (SEMA3B) in various grades of endometrial cancer, Med. Sci. Monit., 25, 4569-4574, https://doi.org/10.12659/MSM.916762.
  85. Wang, J., Zhao, S., Sun, J., Wang, X., Guan, M., Yin, J., and Tang, B. (2023) Oncogenic role and potential regulatory mechanism of fatty acid binding protein 5 based on a pan-cancer analysis, Sci. Rep., 13, 4060, https://doi.org/ 10.1038/s41598-023-30695-9.
  86. Fuselier, T. T., and Lu, H. (2020) PHLD class proteins: a family of new players in the p53 network, Int. J. Mol. Sci., 21, 3543, https://doi.org/10.3390/ijms21103543.
  87. Linares, A., Assou, S., Lapierre, M., Thouennon, E., Duraffourd, C., Fromaget, C., Boulahtouf, A., Tian, G., Ji, J., Sahin, O., Badia, E., Boulle, N., and Cavailles, V. (2019) Increased expression of the HDAC9 gene is associated with antiestrogen resistance of breast cancers, Mol. Oncol., 13, 1534-1547, https://doi.org/10.1002/1878-0261.12505.
  88. Luo, B., Yan, D., Yan, H., and Yuan, J. (2021) Cytochrome P450: Implications for human breast cancer, Oncol. Lett., 22, 548, https://doi.org/10.3892/ol.2021.12809.
  89. Ding, C. B., Yu, W. N., Feng, J. H., and Luo, J. M. (2015) Structure and function of Gab2 and its role in cancer (review), Mol. Med. Rep., 12, 4007-4014, https://doi.org/10.3892/mmr.2015.3951.
  90. Bentires-Alj, M., Gil, S. G., Chan, R., Wang, Z. C., Wang, Y., Imanaka, N., Harris, L. N., Richardson, A., Neel, B. G., and Gu, H. (2006) A role for the scaffolding adapter GAB2 in breast cancer, Nat. Med., 12, 114-121, https://doi.org/ 10.1038/nm1341.
  91. Zhang, P., Chen, Y., Gong, M., Zhuang, Z., Wang, Y., Mu, L., Wang, T., Pan, J., Liu, Y., Xu, J., Liang, R., and Yuan, Y. (2018) Gab2 ablation reverses the stemness of HER2-overexpressing breast cancer cells, Cell Physiol. Biochem., 50, 52-65, https://doi.org/10.1159/000493957.
  92. Bera, T. K., Iavarone, C., Kumar, V., Lee, S., Lee, B., and Pastan, I. (2002) MRP9, an unusual truncated member of the ABC transporter superfamily, is highly expressed in breast cancer, Proc. Natl. Acad. Sci. USA, 99, 6997-7002, https://doi.org/10.1073/pnas.102187299.
  93. Jezierska, A., Matysiak, W., and Motyl, T. (2006) ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy, Med. Sci. Monit., 12, BR263-BR273.
  94. Burkhardt, M., Mayordomo, E., Winzer, K. J., Fritzsche, F., Gansukh, T., Pahl, S., Weichert, W., Denkert, C., Guski, H., Dietel, M., and Kristiansen, G. (2006) Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer, J. Clin. Pathol., 59, 403-409, https://doi.org/10.1136/jcp.2005.028209.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Growth of SK-BR-3 cells after 7 days of incubation in medium containing FBS (9%) and: a - lapatinib (in nM); b - EGF (in ng/ml). The curves show the average number of cells calculated over three repetitions and normalised to conditions without added drugs

Download (105KB)
3. Fig. 2. Growth rate of SK-BR-3 cells in medium containing 5% FBS and 4% human serum obtained from different donors. Growth rate is normalised with respect to the medium containing only FBS (9% FBS; column ‘FBS’)

Download (93KB)
4. Fig. 3. Growth rate of SK-BR-3 cells in the presence of lapatinib at a concentration of 75 nM (a) or 150 nM (b) and human serum. The growth medium contained 5% FBS and 4% human serum or 9% FBS (columns ‘FBS’). Columns represent the mean cell growth rate for each donor sample calculated from three replicates, normalised to conditions without lapatinib and human serum (‘no drug’). For all human donor serum samples, the differences between the ‘FBS + lapatinib’ and ‘human serum + lapatinib’ samples were statistically significant (p < 0.05)

Download (186KB)
5. Fig. 4. Growth rate of SK-BR-3 cells with increasing concentrations of lapatinib (0-220 nM) in growth medium containing 5% FBS and 4% human serum from four blood samples (sm1, sd12, sd19 and sd27) or 9% FBS (FBS). Cell growth rate versus drug concentration curves for each donor sample were calculated from three replicates normalised to conditions without lapatinib and without human serum

Download (88KB)
6. Fig. 5. Growth rate of SK-BR-3 cells upon addition of lapatinib in the presence of EGF at the indicated concentrations. Cell growth rate versus drug concentration curves were calculated using at least three biological replicates of each experiment, normalised to conditions without lapatinib and EGF (curve point ‘without EGF’, at 0 nM lapatinib)

Download (88KB)
7. Fig. 6. Distribution of SK-BR-3 cells by phases of the cell cycle after treatment with lapatinib (200 nM) in the presence of EGF (3 ng/ml) or 4% of human blood serum compared with untreated cells ("FBS" – black column). The proportion of cells in the G0/G1 phase and in the S phase is shown. The asterisks indicate statistically significant differences between the samples: * p < 0.05; ** p < 0.01; *** p < 0.001. The analysis of cell distribution by stages of the cell cycle was carried out by FACS method after staining the cells with propidium iodide. Each column represents the mean ± standard deviation in three independent experiments

Download (278KB)
8. Fig. 7. Differentially expressed genes (DEG) in a series of comparisons with a cell sample without exposure to drugs for: lapatinib; lapatinib and human blood serum; lapatinib and EGF. DEG is shown in red (log2FC > 1 or log2FC < -1, adjusted p-value < 0.05)

Download (188KB)
9. Fig. 8. RNA sequencing of SK-BR-3 cells. Cell growth under the conditions of processing used to collect samples for RNA sequencing (a). Venn diagrams showing the overlap of genes with increased (b) and decreased (c) expression, as well as, together, genes with increased and decreased expression (d) in the presence of: only lapatinib, lapatinib and human serum or lapatinib and EGF. Asterisks indicate the statistical significance of the matches: * p < 0.05; ** p < 0.01; *** p < 0.001

Download (258KB)
10. Fig. 9. The terms of the Gene Onthology (GO) database, the most enriched for genes from the set of DEG with increased and decreased expression caused by lapatinib treatment (a) and a set of key lapatinib genes (lapatinib core) (b). Visualized using the R enrichplot package (http://bioconductor.org/packages / release/bioc/html/enrichplot.html). The enrichment of these GO terms is statistically significant (the p-value adjusted according to the Benjamin–Hochberg criterion is less than 0.05)

Download (527KB)
11. Fig. 10. 20 of the most strongly activated and inhibited molecular pathways calculated for a set of key lapatinib genes (lapatinib core) in SK-BR-3 cells. The PAL value and the adjusted p-value are shown

Download (939KB)
12. Fig. 11. Activation diagram of the NCI Endogenous TLR signaling pathway, presented in the form of an interacting network. The activity of the pathway components compared with the sample without the drug is shown for: cells treated with lapatinib alone (a); groups of key lapatinib genes (Lapatinib core genes) (b); treatment with human blood serum only (c), treatment with human blood serum in combination with lapatinib (d), treatment with EGF only (e), EGF treatment in combination with lapatinib (e). The pathway activation level (PAL) is indicated for each group of DEG compared to conditions without drugs. The green/red arrows indicate activation/inhibition interactions, respectively; the color intensity of the transcription nodes reflects the degree of node activation (the natural logarithm of expression changes along the folds for each node, the geometric mean between expression levels in all samples in the corresponding groups was considered the reference value). Green means activation, red – inhibition, white – non–differential expression, gray - absence of molecular data

Download (580KB)

Copyright (c) 2024 Russian Academy of Sciences