Acrylate reductase of an anaerobic electron transport chain of the marine bacterium shewanella woodyi
- Authors: Bertsova Y.V.1, Serebryakova M.V.1, Bogachev V.A.1, Baykov A.A.1, Bogachev A.V.1
-
Affiliations:
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Issue: Vol 89, No 4 (2024)
- Pages: 666-676
- Section: Regular articles
- URL: https://rjeid.com/0320-9725/article/view/665772
- DOI: https://doi.org/10.31857/S0320972524040099
- EDN: https://elibrary.ru/ZFFRMP
- ID: 665772
Cite item
Abstract
Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.
Full Text

About the authors
Y. V. Bertsova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Author for correspondence.
Email: bogachev@belozersky.msu.ru
Russian Federation, Moscow
M. V. Serebryakova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: bogachev@belozersky.msu.ru
Russian Federation, Moscow
V. A. Bogachev
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: bogachev@belozersky.msu.ru
Russian Federation, Moscow
A. A. Baykov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: bogachev@belozersky.msu.ru
Russian Federation, Moscow
A. V. Bogachev
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: bogachev@belozersky.msu.ru
Russian Federation, Moscow
References
- Bertsova, Y. V., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2022) A novel, NADH-dependent acrylate reductase in Vibrio harveyi, Appl. Environ. Microbiol., 88, e0051922, https://doi.org/10.1128/aem.00519-22.
- Mikoulinskaia, O., Akimenko, V., Galouchko, A., Thauer, R. K., and Hedderich, R. (1999) Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-1, Eur. J. Biochem., 263, 346-352, https://doi.org/10.1046/j.1432-1327.1999.00489.x.
- Gross, R., Simon, J., and Kröger, A. (2001) Periplasmic methacrylate reductase activity in Wolinella succinogenes, Arch. Microbiol., 176, 310-313, https://doi.org/10.1007/s002030100323.
- Bogachev, A. V., Bertsova, Y. V., Bloch, D. A., and Verkhovsky, M. I. (2012) Urocanate reductase: Identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1, Mol. Microbiol., 86, 1452-1463, https:// doi.org/10.1111/mmi.12067.
- Bertsova, Y. V., Serebryakova, M. V., Anashkin, V. A., Baykov, A. A., and Bogachev, A. V. (2024) A redox-regulated, heterodimeric NADH:cinnamate reductase in Vibrio ruber, Biochemistry (Moscow), 89, 241-256, https://doi.org/ 10.1134/S0006297924020056.
- Little, A. S., Younker, I. T., Schechter, M. S., Bernardino, P. N., Méheust, R., Stemczynski, J., Scorza, K., Mullowney, M. W., Sharan, D., Waligurski, E., Smith, R., Ramanswamy, R., Leiter, W., Moran, D., McMillin, M., Odenwald, M. A., Iavarone, A. T., Sidebottom, A. M., Sundararajan, A., Pamer, E. G., Eren, A. M., and Light, S. H. (2024) Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration, Nat. Microbiol., 9, 55-69. https://doi.org/10.1038/s41564-023-01560-2.
- Van der Maarel, M. J. E. C., van Bergeijk, S., van Werkhoven, A. F., Laverman, A. M., Meijer, W. G., Stam, W. T., and Hansen, T. A. (1996) Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov., Arch. Microbiol., 166, 109-115, https://doi.org/10.1007/s002030050363.
- Curson, A. R., Todd, J. D., Sullivan, M. J., and Johnston, A. W. (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes, Nat. Rev. Microbiol., 9, 849-859, https://doi.org/10.1038/nrmicro2653.
- Curson, A. R., Sullivan, M. J., Todd, J. D., and Johnston, A. W. (2011) DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria, ISME J., 5, 1191-1200, https://doi.org/10.1038/ismej.2010.203.
- Arkhipova, O. V., Meer, M. V., Mikoulinskaia, G. V., Zakharova, M. V., Galushko, A. S., Akimenko, V. K., and Kondrashov, F. A. (2015) Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer, PLoS One, 10, e0125888, https://doi.org/10.1371/journal.pone.
- Todd, J. D., Curson, A. R., Sullivan, M. J., Kirkwood, M., and Johnston, A. W. (2012) The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate, PLoS One, 7, e35947, https://doi.org/10.1371/journal.pone.0035947.
- Peek, J. A., and Taylor, R. K. (1992) Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae, Proc. Natl. Acad. Sci. USA, 89, 6210-6214, https://doi.org/10.1073/pnas.89.13.6210.
- Bertsova, Y. V., Kostyrko, V. A., Baykov, A. A., and Bogachev, A. V. (2014) Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase, Biochim. Biophys. Acta, 1837, 1122-1129, https://doi.org/10.1016/ j.bbabio.2013.12.006.
- Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal. Biochem., 150, 76-85, https://doi.org/10.1016/0003-2697(85)90442-7.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
- Thomas, P. E., Ryan, D., and Levin, W. (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels, Anal. Biochem., 75, 168-176, https://doi.org/10.1016/0003-2697(76)90067-1.
- Saha, C. K., Sanches Pires, R., Brolin, H., Delannoy, M., and Atkinson, G. C. (2021) FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation, Bioinformatics, 37, 1312-1314, https:// doi.org/10.1093/bioinformatics/btaa788.
- Sievers, F., and Higgins, D. G. (2018) Clustal Omega for making accurate alignments of many protein sequences, Protein Sci., 27, 135-145, https://doi.org/10.1002/pro.3290.
- Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models, Nat. Biotechnol., 40, 1023-1025, https://doi.org/10.1038/s41587-021-01156-3.
- Taboada, B., Estrada, K., Ciria, R., and Merino, E. (2018) Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes, Bioinformatics, 34, 4118-4120, https://doi.org/10.1093/bioinformatics/bty496.
- Feng, C. Q., Zhang, Z. Y., Zhu, X. J., Lin, Y., Chen, W., Tang, H., and Lin, H. (2019) iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators, Bioinformatics, 35, 1469-1477, https://doi.org/10.1093/ bioinformatics/bty827.
- Makemson, J. C., Fulayfil, N. R., Landry, W., van Ert, L. M., Wimpee, C. F., Widder, E. A., and Case, J. F. (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea, Int. J. Syst. Bacteriol., 47, 1034-1039, https://doi.org/10.1099/00207713-47-4-1034.
- Dobbin, P. S., Butt, J. N., Powell, A. K., Reid, G. A., and Richardson, D. J. (1999) Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400, Biochem. J., 342, 439-448, https://doi.org/10.1042/bj3420439.
- Morris, C. J., Black, A. C., Pealing, S. L., Manson, F. D., Chapman, S. K., Reid, G. A., Gibson, D. M., and Ward, F. B. (1994) Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens, Biochem. J., 302, 587-593, https://doi.org/10.1042/bj3020587.
- Czjzek, M., Dos Santos, J. P., Pommier, J., Giordano, G., Méjean, V., and Haser, R. (1998) Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution, J. Mol. Biol., 284, 435-447, https://doi.org/10.1006/jmbi.1998.2156.
- Sucheta, A., Ackrell, B. A., Cochran, B., and Armstrong, F. A. (1992) Diode-like behavior of a mitochondrial electron-transport enzyme, Nature, 356, 361-362, https://doi.org/10.1038/356361a0.
- Sieburth, J. M. (1961) Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals, J. Bacteriol., 82, 72-79, https://doi.org/10.1128/jb.82.1.72-79.1961.
- Arkhipova, O. V. (2023) Methacrylate redox systems of anaerobic bacteria, Appl. Biochem. Microbiol., 59, 766-777, https://doi.org/10.1134/S0003683823060017.
- Romine, M. F., Carlson, T. S., Norbeck, A. D., McCue, L. A., and Lipton, M. S. (2008) Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome, Appl. Environ. Microbiol., 74, 3257-3265, https:// doi.org/10.1128/AEM.02720-07.
Supplementary files
