Towards development of the 4c-based method detecting interactions of plasmid dna with host genome
- Authors: Yan A.P.1,2, Salnikov P.A.1,2, Gridina M.M.1,2, Belokopytova P.S.1,2, Fishman V.S.1,2
-
Affiliations:
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 89, No 4 (2024)
- Pages: 612-622
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/665768
- DOI: https://doi.org/10.31857/S0320972524040051
- EDN: https://elibrary.ru/ZFUCFV
- ID: 665768
Cite item
Abstract
Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.
Full Text

About the authors
A. P. Yan
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Author for correspondence.
Email: a.yan@g.nsu.ru
Russian Federation, Novosibirsk; Novosibirsk
P. A. Salnikov
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: a.yan@g.nsu.ru
Russian Federation, Novosibirsk; Novosibirsk
M. M. Gridina
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: a.yan@g.nsu.ru
Russian Federation, Novosibirsk; Novosibirsk
P. S. Belokopytova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: a.yan@g.nsu.ru
Russian Federation, Novosibirsk; Novosibirsk
V. S. Fishman
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: a.yan@g.nsu.ru
Russian Federation, Novosibirsk; Novosibirsk
References
- Kabirova, E., Nurislamov, A., Shadskiy, A., Smirnov, A., Popov, A., Salnikov, P., Battulin, N., and Fishman, V. (2023) Function and evolution of the loop extrusion machinery in animals, Int. J. Mol. Sci., 24, 5017, https://doi.org/10.3390/ijms24055017.
- Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N., and Mirny, L. A. (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation, Proc. Natl. Acad. Sci. USA, 115, E6697-E6706, https:// doi.org/10.1073/pnas.1717730115.
- Fishman, V., Battulin, N., Nuriddinov, M., Maslova, A., Zlotina, A., Strunov, A., Chervyakova, D., Korablev, A., Serov, O., and Krasikova, A. (2019) 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin, Nucleic Acids Res., 47, 648-665, https://doi.org/10.1093/nar/gky1103.
- Ryzhkova, A., Taskina, A., Khabarova, A., Fishman, V., and Battulin, N. (2021) Erythrocytes 3D genome organization in vertebrates, Sci. Rep., 11, 4414, https://doi.org/10.1038/s41598-021-83903-9.
- Razin, S. V., and Gavrilov, A. A. (2020) The role of liquid-liquid phase separation in the compartmentalization of cell nucleus and spatial genome organization, Biochemistry (Moscow), 85, 643-650, https://doi.org/10.1134/S0006297920060012.
- Kantidze, O. L., and Razin, S. V. (2020) Weak interactions in higher-order chromatin organization, Nucleic Acids Res., 48, 4614-4626, https://doi.org/10.1093/nar/gkaa261.
- Nuriddinov, M., and Fishman, V. (2019) C-InterSecture-a computational tool for interspecies comparison of genome architecture, Bioinformatics (Oxford, England), 35, 4912-4921, https://doi.org/10.1093/bioinformatics/btz415.
- Lukyanchikova, V., Nuriddinov, M., Belokopytova, P., Taskina, A., Liang, J., Reijnders, J. M. F., Ruzzante, L., Feron, R., Waterhouse, R. M., Wu, Y., Mao, C., Tu, Z., and Sharakhov, I. V. (2022) Anopheles mosquitoes reveal new principles of 3D genome organization in insects, Nat. Commun., 13, 1960, https://doi.org/10.1038/s41467-022-29599-5.
- Dias, J. D., Sarica, N., Cournac, A., Koszul, R., and Neuveut, C. (2022) Crosstalk between hepatitis B virus and the 3D genome structure, Viruses, 14, 445, https://doi.org/10.3390/v14020445.
- Tang, D., Zhao, H., Wu, Y., Peng, B., Gao, Z., Sun, Y., Duan, J., Qi, Y., Li, Y., Zhou, Z., Guo, G., Zhang, Y., Li, C., Sui, J., and Li, W. (2021) Transcriptionally inactive hepatitis B virus episome DNA preferentially resides in the vicinity of chromosome 19 in 3D host genome upon infection, Cell Rep., 35, 109288, https://doi.org/10.1016/j.celrep.2021.109288.
- Sokol, M., Wabl, M., Ruiz, I. R., and Pedersen, F. S. (2014) Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors, Retrovirology, 11, 36, https://doi.org/ 10.1186/1742-4690-11-36.
- Razin, S. V., Gavrilov, A. A., and Iarovaia, O. V. (2020) Modification of nuclear compartments and the 3D genome in the course of a viral infection, Acta Naturae, 12, 34-46, https://doi.org/10.32607/actanaturae.11041.
- Everett, R. D. (2013) The spatial organization of DNA virus genomes in the nucleus, PLoS Pathog., 9, e1003386, https://doi.org/10.1371/journal.ppat.1003386.
- Corpet, A., Kleijwegt, C., Roubille, S., Juillard, F., Jacquet, K., Texier, P., and Lomonte, P. (2020) PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res., 48, 11890-11912, https://doi.org/10.1093/nar/gkaa828.
- Rai, T. S., Glass, M., Cole, J. J., Rather, M. I., Marsden, M., Neilson, M., Brock, C., Humphreys, I., Everett, R., and Adams, P. (2017) Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity, Nucleic Acids Res., 45, 11673-11683, https://doi.org/10.1093/nar/gkx771.
- Schmid, M., Speiseder, T., Dobner, T., and Gonzalez, R. A. (2014) DNA virus replication compartments, J. Virol., 88, 1404-1420, https://doi.org/10.1128/JVI.02046-13.
- Charman, M., and Weitzman, M. D. (2020) Replication compartments of DNA viruses in the nucleus: location, location, location, Viruses, 12, 151, https://doi.org/10.3390/v12020151.
- Kempfer, R., and Pombo, A. (2020) Methods for mapping 3D chromosome architecture, Nat. Rev. Genet., 21, 207-226, https://doi.org/10.1038/s41576-019-0195-2.
- Belaghzal, H., Dekker, J., and Gibcus, J. H. (2017) Hi-C 2.0: an optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation, Methods, 123, 56-65, https://doi.org/10.1016/j.ymeth.2017.04.004.
- Gridina, M., Mozheiko, E., Valeev, E., Nazarenko, L. P., Lopatkina, M. E., Markova, Z. G., Yablonskaya, M. I., Voinova, V. Y., Shilova, N. V., Lebedev, I. N., and Fishman, V. (2021) A cookbook for DNase Hi-C, Epigenet. Chromatin, 14, 15, https://doi.org/10.1186/s13072-021-00389-5.
- Gvritishvili, A. G., Leung, K. W., and Tombran-Tink, J. (2010) Codon preference optimization increases heterologous PEDF expression, PLoS One, 5, e15056, https://doi.org/10.1371/journal.pone.0015056.
- Prajapati, H. K., Kumar, D., Yang, X.-M., Ma, C.-H., Mittal, P., Jayaram, M., and Ghosh, S. (2020) Hitchhiking on condensed chromatin promotes plasmid persistence in yeast without perturbing chromosome function, bioRxiv, https://doi.org/10.1101/2020.06.08.139568.
- Gracey Maniar, L. E., Maniar, J. M., Chen, Z.-Y., Lu, J., Fire, A. Z., and Kay, M. A. (2013) Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level, Mol. Ther., 21, 131-138, https:// doi.org/10.1038/mt.2012.244.
- Dean, D. A. (1997) Import of plasmid DNA into the nucleus is sequence specific, Exp. Cell Res., 230, 293-302, https://doi.org/10.1006/excr.1996.3427.
- Mladenova, V., Mladenov, E., and Russev, G. (2009) Organization of plasmid DNA into nucleosome-like structures after transfection in eukaryotic cells, Biotechnol. Biotechnolog. Equip., 23, 1044-1047, https://doi.org/10.1080/ 13102818.2009.10817609.
- Hildebrand, E. M., and Dekker, J. (2020) Mechanisms and functions of chromosome compartmentalization, Trends Biochem. Sci., 45, 385-396, https://doi.org/10.1016/j.tibs.2020.01.002.
- Erdel, F., and Rippe, K. (2018) Formation of chromatin subcompartments by phase separation, Biophys. J., 114, 2262-2270, https://doi.org/10.1016/j.bpj.2018.03.011.
- Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J.-M., and Cavalli, G. (2018) Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development, Mol. Cell, 71, 73-88.e5, https:// doi.org/10.1016/j.molcel.2018.05.032.
- Mattei, A. L., Bailly, N., and Meissner, A. (2022) DNA methylation: a historical perspective, Trends Genet., 38, 676-707, https://doi.org/10.1016/j.tig.2022.03.010.
- Rountree, M. R., and Selker, E. U. (2010) DNA methylation and the formation of heterochromatin in Neurospora crassa, Heredity, 105, 38-44, https://doi.org/10.1038/hdy.2010.44.
- Phillips, J. E., and Corces, V. G. (2009) CTCF: master weaver of the genome, Cell, 137, 1194-1211, https:// doi.org/10.1016/j.cell.2009.06.001.
- Singatulina, A. S., Hamon, L., Sukhanova, M. V., Desforges, B., Joshi, V., Bouhss, A., Lavrik, O. V., and Pastre, D. (2019) PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA, Cell Rep., 27, 1809-1821, https://doi.org/10.1016/j.celrep.2019.04.031.
Supplementary files
