Cohesin-dependent loop extrusion: molecular mechanics and role in cell physiology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most prominent representatives of multisubunit SMC-complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC-dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.

Full Text

Restricted Access

About the authors

A. K. Golov

Institute of Gene Biology, Russian Academy of Sciences; Technion – Israel Institute of Technology

Author for correspondence.
Email: golovstein@gmail.com
Russian Federation, Moscow; Haifa, Israel

A. A. Gavrilov

Institute of Gene Biology, Russian Academy of Sciences

Email: aleksey.a.gavrilov@gmail.com
Russian Federation, Moscow

References

  1. Yatskevich, S., Rhodes, J., and Nasmyth, K. (2019) Organization of chromosomal DNA by SMC complexes, Annu. Rev. Genet., 53, 445-482, https://doi.org/10.1146/annurev-genet-112618-043633.
  2. Davidson, I. F., and Peters, J.-M. (2021) Genome folding through loop extrusion by SMC complexes, Nat. Rev. Mol. Cell Biol., 22, 445-464, https://doi.org/10.1038/s41580-021-00349-7.
  3. Strunnikov, A. V., Larionov, V. L., and Koshland, D. (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family, J. Cell Biol., 123, 1635-1648, https://doi.org/10.1083/jcb.123.6.1635.
  4. Michaelis, C., Ciosk, R., and Nasmyth, K. (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids, Cell, 91, 35-45, https://doi.org/10.1016/s0092-8674(01)80007-6.
  5. Guacci, V., Koshland, D., and Strunnikov, A. (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae, Cell, 91, 47-57, https://doi.org/10.1016/s0092-8674(01)80008-8.
  6. Gruber, S., Haering, C. H., and Nasmyth, K. (2003) Chromosomal cohesin forms a ring, Cell, 112, 765-777, https:// doi.org/10.1016/S0092-8674(03)00162-4.
  7. Gligoris, T. G., Scheinost, J. C., Bürmann, F., Petela, N., Chan, K.-L., Uluocak, P., Beckouët, F., Gruber, S., Nasmyth, K., and Löwe, J. (2014) Closing the cohesin ring: structure and function of its Smc3-kleisin interface, Science, 346, 963-967, https://doi.org/10.1126/science.1256917.
  8. Srinivasan, M., Scheinost, J. C., Petela, N. J., Gligoris, T. G., Wissler, M., Ogushi, S., Collier, J. E., Voulgaris, M., Kurze, A., Chan, K.-L., Hu, B., Costanzo, V., and Nasmyth, K. A. (2018) The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms, Cell, 173, 1508-1519.e18, https://doi.org/10.1016/ j.cell.2018.04.015.
  9. Peters, J.-M., Tedeschi, A., and Schmitz, J. (2008) The cohesin complex and its roles in chromosome biology, Genes Dev., 22, 3089-3114, https://doi.org/10.1101/gad.1724308.
  10. Oldenkamp, R., and Rowland, B. D. (2022) A walk through the SMC cycle: from catching DNAs to shaping the genome, Mol. Cell, 82, 1616-1630, https://doi.org/10.1016/j.molcel.2022.04.006.
  11. Kabirova, E., Nurislamov, A., Shadskiy, A., Smirnov, A., Popov, A., Salnikov, P., Battulin, N., and Fishman, V. (2023) Function and evolution of the loop extrusion machinery in animals, Int. J. Mol. Sci., 24, 5017, https://doi.org/10.3390/ijms24055017.
  12. Ganji, M., Shaltiel, I. A., Bisht, S., Kim, E., Kalichava, A., Haering, C. H., and Dekker, C. (2018) Real-time imaging of DNA loop extrusion by condensin, Science, 360, 102-105, https://doi.org/10.1126/science.aar7831.
  13. Pradhan, B., Kanno, T., Umeda Igarashi, M., Loke, M. S., Baaske, M. D., Wong, J. S. K., Jeppsson, K., Björkegren, C., and Kim, E. (2023) The Smc5/6 complex is a DNA loop-extruding motor, Nature, 616, 843-848, https://doi.org/10.1038/s41586-023-05963-3.
  14. Wang, X., Hughes, A. C., Brandão, H. B., Walker, B., Lierz, C., Cochran, J. C., Oakley, M. G., Kruse, A. C., and Rudner, D. Z. (2018) In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex, Mol. Cell, 71, 841-847.e5, https://doi.org/10.1016/j.molcel.2018.07.006.
  15. Yoshinaga, M., and Inagaki, Y. (2021) Ubiquity and origins of structural maintenance of chromosomes (SMC) proteins in eukaryotes, Genome Biol. Evol., 13, evab256, https://doi.org/10.1093/gbe/evab256.
  16. Wells, J. N., Gligoris, T. G., Nasmyth, K. A., and Marsh, J. A. (2017) Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins, Curr. Biol., 27, R17-R18, https://doi.org/10.1016/j.cub. 2016.11.050.
  17. Batty, P., Langer, C. C. H., Takács, Z., Tang, W., Blaukopf, C., Peters, J.-M., and Gerlich, D. W. (2023) Cohesin-mediated DNA loop extrusion resolves sister chromatids in G2 phase, EMBO J., 42, e113475, https://doi.org/10.15252/embj.2023113475.
  18. Nagasaka, K., Davidson, I. F., Stocsits, R. R., Tang, W., Wutz, G., Batty, P., Panarotto, M., Litos, G., Schleiffer, A., Gerlich, D. W., and Peters, J.-M. (2023) Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms, Mol. Cell, 83, 3049-3063.e6, https://doi.org/10.1016/j.molcel.2023.07.024.
  19. Golov, A. K., and Gavrilov, A. A. (2024) Cohesin complex: structure and principles of interaction with DNA, Biochemistry (Moscow), 89, 585-600, https://doi.org/S0006297924040011.
  20. Gligoris, T., and Löwe, J. (2016) Structural insights into ring formation of cohesin and related Smc complexes, Trends Cell Biol., 26, 680-693, https://doi.org/10.1016/j.tcb.2016.04.002.
  21. Stigler, J., Çamdere, G. Ö., Koshland, D. E., and Greene, E. C. (2016) Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin, Cell Rep., 15, 988-998, https://doi.org/10.1016/j.celrep. 2016.04.003.
  22. Krishnan, A., Burroughs, A. M., Iyer, L. M., and Aravind, L. (2020) Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems, Nucleic Acids Res., 48, 10045-10075, https://doi.org/10.1093/nar/gkaa726.
  23. Lee, H., Noh, H., and Ryu, J.-K. (2021) Structure-function relationships of SMC protein complexes for DNA loop extrusion, Biodesign, 9, 1-13, https://doi.org/10.34184/kssb.2021.9.1.1.
  24. Ladurner, R., Kreidl, E., Ivanov, M. P., Ekker, H., Idarraga-Amado, M. H., Busslinger, G. A., Wutz, G., Cisneros, D. A., and Peters, J.-M. (2016) Sororin actively maintains sister chromatid cohesion, EMBO J., 35, 635-653, https:// doi.org/10.15252/embj.201592532.
  25. Rhodes, J. D. P., Haarhuis, J. H. I., Grimm, J. B., Rowland, B. D., Lavis, L. D., and Nasmyth, K. A. (2017) Cohesin can remain associated with chromosomes during DNA replication, Cell Rep., 20, 2749-2755, https://doi.org/10.1016/ j.celrep.2017.08.092.
  26. Petela, N. J., Gligoris, T. G., Metson, J., Lee, B.-G., Voulgaris, M., Hu, B., Kikuchi, S., Chapard, C., Chen, W., Rajendra, E., Srinivisan, M., Yu, H., Löwe, J., and Nasmyth, K. A. (2018) Scc2 is a potent activator of cohesin’s ATPase that promotes loading by binding Scc1 without Pds5, Mol. Cell, 70, 1134-1148.e7, https://doi.org/10.1016/ j.molcel.2018.05.022.
  27. Cattoglio, C., Pustova, I., Walther, N., Ho, J. J., Hantsche-Grininger, M., Inouye, C. J., Hossain, M. J., Dailey, G. M., Ellenberg, J., Darzacq, X., Tjian, R., and Hansen, A. S. (2019) Determining cellular CTCF and cohesin abundances to constrain 3D genome models, Elife, 8, e40164, https://doi.org/10.7554/eLife.40164.
  28. Holzmann, J., Politi, A. Z., Nagasaka, K., Hantsche-Grininger, M., Walther, N., Koch, B., Fuchs, J., Dürnberger, G., Tang, W., Ladurner, R., Stocsits, R. R., Busslinger, G. A., Novák, B., Mechtler, K., Davidson, I. F., Ellenberg, J., and Peters, J.-M. (2019) Absolute quantification of cohesin, CTCF and their regulators in human cells, Elife, 8, e46269, https://doi.org/10.7554/eLife.46269.
  29. Gerlich, D., Koch, B., Dupeux, F., Peters, J.-M., and Ellenberg, J. (2006) Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication, Curr. Biol., 16, 1571-1578, https://doi.org/10.1016/ j.cub.2006.06.068.
  30. McNairn, A. J., and Gerton, J. L. (2009) Intersection of ChIP and FLIP, genomic methods to study the dynamics of the cohesin proteins, Chromosome Res., 17, 155-163, https://doi.org/10.1007/s10577-008-9007-9.
  31. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., and Darzacq, X. (2017) CTCF and cohesin regulate chromatin loop stability with distinct dynamics, Elife, 6, e25776, https://doi.org/10.7554/eLife.25776.
  32. Mishra, A., Hu, B., Kurze, A., Beckouët, F., Farcas, A.-M., Dixon, S. E., Katou, Y., Khalid, S., Shirahige, K., and Nasmyth, K. (2010) Both interaction surfaces within cohesin’s hinge domain are essential for its stable chromosomal association, Curr. Biol., 20, 279-289, https://doi.org/10.1016/j.cub.2009.12.059.
  33. Golfier, S., Quail, T., Kimura, H., and Brugués, J. (2020) Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner, Elife, 9, e53885, https://doi.org/10.7554/eLife.53885.
  34. Abramo, K., Valton, A.-L., Venev, S. V., Ozadam, H., Fox, A. N., and Dekker, J. (2019) A chromosome folding intermediate at the condensin-to-cohesin transition during telophase, Nat. Cell Biol., 21, 1393-1402, https://doi.org/10.1038/s41556-019-0406-2.
  35. Zhang, H., Emerson, D. J., Gilgenast, T. G., Titus, K. R., Lan, Y., Huang, P., Zhang, D., Wang, H., Keller, C. A., Giardine, B., Hardison, R. C., Phillips-Cremins, J. E., and Blobel, G. A. (2019) Chromatin structure dynamics during the mitosis-to-G1 phase transition, Nature, 576, 158-162, https://doi.org/10.1038/s41586-019-1778-y.
  36. Dauban, L., Montagne, R., Thierry, A., Lazar-Stefanita, L., Bastié, N., Gadal, O., Cournac, A., Koszul, R., and Beckouët, F. (2020) Regulation of cohesin-mediated chromosome folding by Eco1 and other partners, Mol. Cell, 77, 1279-1293.e4, https://doi.org/10.1016/j.molcel.2020.01.019.
  37. Zuin, J., Dixon, J. R., van der Reijden, M. I. J. A., Ye, Z., Kolovos, P., Brouwer, R. W. W., van de Corput, M. P. C., van de Werken, H. J. G., Knoch, T. A., van Ijcken, W. F. J., Grosveld, F. G., Ren, B., and Wendt, K. S. (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells, Proc. Natl. Acad. Sci. USA, 111, 996-1001, https://doi.org/10.1073/pnas.1317788111.
  38. Busslinger, G. A., Stocsits, R. R., van der Lelij, P., Axelsson, E., Tedeschi, A., Galjart, N., and Peters, J.-M. (2017) Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl, Nature, 544, 503-507, https:// doi.org/10.1038/nature22063.
  39. Vian, L., Pękowska, A., Rao, S. S. P., Kieffer-Kwon, K.-R., Jung, S., Baranello, L., Huang, S.-C., El Khattabi, L., Dose, M., Pruett, N., Sanborn, A. L., Canela, A., Maman, Y., Oksanen, A., Resch, W., Li, X., Lee, B., Kovalchuk, A. L., Tang, Z., Nelson, S., Di Pierro, M., Cheng, R. R., Machol, I., St Hilaire, B. G., Durand, N. C., et al. (2018) The energetics and physiological impact of cohesin extrusion, Cell, 173, 1165-1178.e20, https://doi.org/10.1016/j.cell. 2018.03.072.
  40. Banigan, E. J., Tang, W., van den Berg, A. A., Stocsits, R. R., Wutz, G., Brandão, H. B., Busslinger, G. A., Peters, J.-M., and Mirny, L. A. (2023) Transcription shapes 3D chromatin organization by interacting with loop extrusion, Proc. Natl. Acad. Sci. USA, 120, e2210480120, https://doi.org/10.1073/pnas.2210480120.
  41. Wutz, G., Várnai, C., Nagasaka, K., Cisneros, D. A., Stocsits, R. R., Tang, W., Schoenfelder, S., Jessberger, G., Muhar, M., Hossain, M. J., Walther, N., Koch, B., Kueblbeck, M., Ellenberg, J., Zuber, J., Fraser, P., and Peters, J.-M. (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins, EMBO J., 36, 3573-3599, https://doi.org/10.15252/embj.201798004.
  42. Haarhuis, J. H. I., van der Weide, R. H., Blomen, V. A., Omar Yáñez-Cuna, J., Amendola, M., van Ruiten, M. S., Krijger, P. H. L., Teunissen, H., Medema, R. H., van Steensel, B., Brummelkamp, T. R., de Wit, E., and Rowland, B. D. (2017) The cohesin release factor WAPL restricts chromatin loop extension, Cell, 169, 693-707.e14, https://doi.org/10.1016/ j.cell.2017.04.013.
  43. Wutz, G., Ladurner, R., St Hilaire, B. G., Stocsits, R. R., Nagasaka, K., Pignard, B., Sanborn, A., Tang, W., Várnai, C., Ivanov, M. P., Schoenfelder, S., van der Lelij, P., Huang, X., Dürnberger, G., Roitinger, E., Mechtler, K., Davidson, I. F., Fraser, P., Lieberman-Aiden, E., and Peters, J.-M. (2020) ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL, Elife, 9, e52091, https://doi.org/10.7554/eLife.52091.
  44. Costantino, L., Hsieh, T.-H. S., Lamothe, R., Darzacq, X., and Koshland, D. (2020) Cohesin residency determines chromatin loop patterns, Elife, 9, e59889, https://doi.org/10.7554/eLife.59889.
  45. Bastié, N., Chapard, C., Dauban, L., Gadal, O., Beckouët, F., and Koszul, R. (2022) Smc3 acetylation, Pds5 and Scc2 control the translocase activity that establishes cohesin-dependent chromatin loops, Nat. Struct. Mol. Biol., 29, 575-585, https://doi.org/10.1038/s41594-022-00780-0.
  46. Mizuguchi, T., Fudenberg, G., Mehta, S., Belton, J.-M., Taneja, N., Folco, H. D., FitzGerald, P., Dekker, J., Mirny, L., Barrowman, J., and Grewal, S. I. S. (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe, Nature, 516, 432-435, https://doi.org/10.1038/nature13833.
  47. Gandhi, R., Gillespie, P. J., and Hirano, T. (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase, Curr. Biol., 16, 2406-2417, https://doi.org/10.1016/j.cub.2006.10.061.
  48. Huis in ’t Veld, P. J., Herzog, F., Ladurner, R., Davidson, I. F., Piric, S., Kreidl, E., Bhaskara, V., Aebersold, R., and Peters, J.-M. (2014) Characterization of a DNA exit gate in the human cohesin ring, Science, 346, 968-972, https:// doi.org/10.1126/science.1256904.
  49. Alonso-Gil, D., and Losada, A. (2023) NIPBL and cohesin: new take on a classic tale, Trends Cell Biol., 33, 860-871, https://doi.org/10.1016/j.tcb.2023.03.006.
  50. Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N. A., Huber, W., Haering, C. H., Mirny, L., and Spitz, F. (2017) Two independent modes of chromatin organization revealed by cohesin removal, Nature, 551, 51-56, https://doi.org/10.1038/nature24281.
  51. Tedeschi, A., Wutz, G., Huet, S., Jaritz, M., Wuensche, A., Schirghuber, E., Davidson, I. F., Tang, W., Cisneros, D. A., Bhaskara, V., Nishiyama, T., Vaziri, A., Wutz, A., Ellenberg, J., and Peters, J.-M. (2013) Wapl is an essential regulator of chromatin structure and chromosome segregation, Nature, 501, 564-568, https://doi.org/10.1038/nature12471.
  52. Ur, S. N., and Corbett, K. D. (2021) Architecture and dynamics of meiotic chromosomes, Annu. Rev. Genet., 55, 497-526, https://doi.org/10.1146/annurev-genet-071719-020235.
  53. Nasmyth, K. (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis, Annu. Rev. Genet., 35, 673-745, https://doi.org/10.1146/annurev.genet.35.102401.091334.
  54. Mach, P., Kos, P. I., Zhan, Y., Cramard, J., Gaudin, S., Tünnermann, J., Marchi, E., Eglinger, J., Zuin, J., Kryzhanovska, M., Smallwood, S., Gelman, L., Roth, G., Nora, E. P., Tiana, G., and Giorgetti, L. (2022) Cohesin and CTCF control the dynamics of chromosome folding, Nat. Genet., 54, 1907-1918, https://doi.org/10.1038/s41588-022-01232-7.
  55. Schalbetter, S. A., Fudenberg, G., Baxter, J., Pollard, K. S., and Neale, M. J. (2019) Principles of meiotic chromosome assembly revealed in S. cerevisiae, Nat. Commun., 10, 4795, https://doi.org/10.1038/s41467-019-12629-0.
  56. Lengronne, A., Katou, Y., Mori, S., Yokobayashi, S., Kelly, G. P., Itoh, T., Watanabe, Y., Shirahige, K., and Uhlmann, F. (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription, Nature, 430, 573-578, https://doi.org/10.1038/nature02742.
  57. Schmidt, C. K., Brookes, N., and Uhlmann, F. (2009) Conserved features of cohesin binding along fission yeast chromosomes, Genome Biol., 10, R52, https://doi.org/10.1186/gb-2009-10-5-r52.
  58. Nora, E. P., Caccianini, L., Fudenberg, G., So, K., Kameswaran, V., Nagle, A., Uebersohn, A., Hajj, B., Saux, A. L., Coulon, A., Mirny, L. A., Pollard, K. S., Dahan, M., and Bruneau, B. G. (2020) Molecular basis of CTCF binding polarity in genome folding, Nat. Commun., 11, 5612, https://doi.org/10.1038/s41467-020-19283-x.
  59. Li, Y., Haarhuis, J. H. I., Sedeño Cacciatore, Á., Oldenkamp, R., van Ruiten, M. S., Willems, L., Teunissen, H., Muir, K. W., de Wit, E., Rowland, B. D., and Panne, D. (2020) The structural basis for cohesin-CTCF-anchored loops, Nature, 578, 472-476, https://doi.org/10.1038/s41586-019-1910-z.
  60. Shi, Z., Gao, H., Bai, X.-C., and Yu, H. (2020) Cryo-EM structure of the human cohesin-NIPBL-DNA complex, Science, 368, 1454-1459, https://doi.org/10.1126/science.abb0981.
  61. Collier, J. E., Lee, B.-G., Roig, M. B., Yatskevich, S., Petela, N. J., Metson, J., Voulgaris, M., Gonzalez Llamazares, A., Löwe, J., and Nasmyth, K. A. (2020) Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3, Elife, 9, e59560, https://doi.org/10.7554/eLife.59560.
  62. Beckouët, F., Srinivasan, M., Roig, M. B., Chan, K.-L., Scheinost, J. C., Batty, P., Hu, B., Petela, N., Gligoris, T., Smith, A. C., Strmecki, L., Rowland, B. D., and Nasmyth, K. (2016) Releasing activity disengages cohesin’s Smc3/Scc1 interface in a process blocked by acetylation, Mol. Cell, 61, 563-574, https://doi.org/10.1016/j.molcel.2016.01.026.
  63. Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376-380, https://doi.org/10.1038/nature11082.
  64. Pugacheva, E. M., Kubo, N., Loukinov, D., Tajmul, M., Kang, S., Kovalchuk, A. L., Strunnikov, A. V., Zentner, G. E., Ren, B., and Lobanenkov, V. V. (2020) CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention, Proc. Natl. Acad. Sci. USA, 117, 2020-2031, https://doi.org/10.1073/pnas.1911708117.
  65. Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., and Aiden, E. L. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665-1680, https://doi.org/10.1016/j.cell.2014.11.021.
  66. Sanborn, A. L., Rao, S. S. P., Huang, S.-C., Durand, N. C., Huntley, M. H., Jewett, A. I., Bochkov, I. D., Chinnappan, D., Cutkosky, A., Li, J., Geeting, K. P., Gnirke, A., Melnikov, A., McKenna, D., Stamenova, E. K., Lander, E. S., and Aiden, E. L. (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. USA, 112, E6456-E6465, https://doi.org/10.1073/pnas.1518552112.
  67. Gómez-Marín, C., Tena, J. J., Acemel, R. D., López-Mayorga, M., Naranjo, S., de la Calle-Mustienes, E., Maeso, I., Beccari, L., Aneas, I., Vielmas, E., Bovolenta, P., Nobrega, M. A., Carvajal, J., and Gómez-Skarmeta, J. L. (2015) Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders, Proc. Natl. Acad. Sci. USA, 112, 7542-7547, https://doi.org/10.1073/pnas.1505463112.
  68. Davidson, I. F., Goetz, D., Zaczek, M. P., Molodtsov, M. I., Huis In ’t Veld, P. J., Weissmann, F., Litos, G., Cisneros, D. A., Ocampo-Hafalla, M., Ladurner, R., Uhlmann, F., Vaziri, A., and Peters, J.-M. (2016) Rapid movement and transcriptional re-localization of human cohesin on DNA, EMBO J., 35, 2671-2685, https://doi.org/10.15252/embj.201695402.
  69. Pradhan, B., Barth, R., Kim, E., Davidson, I. F., Bauer, B., van Laar, T., Yang, W., Ryu, J.-K., van der Torre, J., Peters, J.-M., and Dekker, C. (2022) SMC complexes can traverse physical roadblocks bigger than their ring size, Cell Rep., 41, 111491, https://doi.org/10.1016/j.celrep.2022.111491.
  70. Hsieh, T.-H. S., Fudenberg, G., Goloborodko, A., and Rando, O. J. (2016) Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome, Nat. Methods, 13, 1009-1011, https://doi.org/10.1038/nmeth.4025.
  71. Valton, A.-L., Venev, S. V., Mair, B., Khokhar, E. S., Tong, A. H. Y., Usaj, M., Chan, K., Pai, A. A., Moffat, J., and Dekker, J. (2022) A cohesin traffic pattern genetically linked to gene regulation, Nat. Struct. Mol. Biol., 29, 1239-1251, https://doi.org/10.1038/s41594-022-00890-9.
  72. Sundin, O., and Varshavsky, A. (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers, Cell, 21, 103-114, https://doi.org/10.1016/0092-8674(80)90118-x.
  73. Wang, J. C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective, Nat. Rev. Mol. Cell Biol., 3, 430-440, https://doi.org/10.1038/nrm831.
  74. Orlandini, E., Marenduzzo, D., and Michieletto, D. (2019) Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology, Proc. Natl. Acad. Sci. USA, 116, 8149-8154, https://doi.org/10.1073/pnas.1815394116.
  75. Nolivos, S., and Sherratt, D. (2014) The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes, FEMS Microbiol. Rev., 38, 380-392, https://doi.org/10.1111/1574-6976.12045.
  76. Ono, T., Losada, A., Hirano, M., Myers, M. P., Neuwald, A. F., and Hirano, T. (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells, Cell, 115, 109-121, https:// doi.org/10.1016/s0092-8674(03)00724-4.
  77. Ono, T., Fang, Y., Spector, D. L., and Hirano, T. (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells, Mol. Biol. Cell, 15, 3296-3308, https://doi.org/10.1091/mbc.e04-03-0242.
  78. Piazza, I., Haering, C. H., and Rutkowska, A. (2013) Condensin: crafting the chromosome landscape, Chromosoma, 122, 175-190, https://doi.org/10.1007/s00412-013-0405-1.
  79. Houlard, M., Cutts, E. E., Shamim, M. S., Godwin, J., Weisz, D., Presser Aiden, A., Lieberman Aiden, E., Schermelleh, L., Vannini, A., and Nasmyth, K. (2021) MCPH1 inhibits condensin II during interphase by regulating its SMC2-Kleisin interface, Elife, 10, e73348, https://doi.org/10.7554/eLife.73348.
  80. Oomen, M. E., Hedger, A. K., Watts, J. K., and Dekker, J. (2020) Detecting chromatin interactions between and along sister chromatids with SisterC, Nat. Methods, 17, 1002-1009, https://doi.org/10.1038/s41592-020-0930-9.
  81. Mitter, M., Gasser, C., Takacs, Z., Langer, C. C. H., Tang, W., Jessberger, G., Beales, C. T., Neuner, E., Ameres, S. L., Peters, J.-M., Goloborodko, A., Micura, R., and Gerlich, D. W. (2020) Conformation of sister chromatids in the replicated human genome, Nature, 586, 139-144, https://doi.org/10.1038/s41586-020-2744-4.
  82. Freeman, L., Aragon-Alcaide, L., and Strunnikov, A. (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA, J. Cell Biol., 149, 811-824, https://doi.org/10.1083/jcb.149.4.811.
  83. Nagasaka, K., Hossain, M. J., Roberti, M. J., Ellenberg, J., and Hirota, T. (2016) Sister chromatid resolution is an intrinsic part of chromosome organization in prophase, Nat. Cell Biol., 18, 692-699, https://doi.org/10.1038/ ncb3353.
  84. Renshaw, M. J., Ward, J. J., Kanemaki, M., Natsume, K., Nédélec, F. J., and Tanaka, T. U. (2010) Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation, Dev. Cell, 19, 232-244, https://doi.org/10.1016/j.devcel.2010.07.013.
  85. Schalbetter, S. A., Goloborodko, A., Fudenberg, G., Belton, J.-M., Miles, C., Yu, M., Dekker, J., Mirny, L., and Baxter, J. (2017) SMC complexes differentially compact mitotic chromosomes according to genomic context, Nat. Cell Biol., 19, 1071-1080, https://doi.org/10.1038/ncb3594.
  86. Gibcus, J. H., Samejima, K., Goloborodko, A., Samejima, I., Naumova, N., Nuebler, J., Kanemaki, M. T., Xie, L., Paulson, J. R., Earnshaw, W. C., Mirny, L. A., and Dekker, J. (2018) A pathway for mitotic chromosome formation, Science, https://doi.org/10.1126/science.aao6135.
  87. Hirano, T. (2012) Condensins: universal organizers of chromosomes with diverse functions, Genes Dev., 26, 1659-1678, https://doi.org/10.1101/gad.194746.112.
  88. Rao, S. S. P., Huang, S.-C., Glenn St Hilaire, B., Engreitz, J. M., Perez, E. M., Kieffer-Kwon, K.-R., Sanborn, A. L., Johnstone, S. E., Bascom, G. D., Bochkov, I. D., Huang, X., Shamim, M. S., Shin, J., Turner, D., Ye, Z., Omer, A. D., Robinson, J. T., Schlick, T., Bernstein, B. E., Casellas, R., Lander, E. S., and Aiden, E. L. (2017) Cohesin loss eliminates all loop domains, Cell, 171, 305-320.e24, https://doi.org/10.1016/j.cell.2017.09.026.
  89. Hoencamp, C., Dudchenko, O., Elbatsh, A. M. O., Brahmachari, S., Raaijmakers, J. A., van Schaik, T., Sedeño Cacciatore, Á., Contessoto, V. G., van Heesbeen, R. G. H. P., van den Broek, B., Mhaskar, A. N., Teunissen, H., St Hilaire, B. G., Weisz, D., Omer, A. D., Pham, M., Colaric, Z., Yang, Z., Rao, S. S. P., Mitra, N., Lui, C., Yao, W., Khan, R., Moroz, L. L., Kohn, A., et al. (2021) 3D genomics across the tree of life reveals condensin II as a determinant of architecture type, Science, 372, 984-989, https://doi.org/10.1126/science.abe2218.
  90. Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y., and Dekker, J. (2020) Multi-contact 3C reveals that the human genome during interphase is largely not entangled, Nat. Struct. Mol. Biol., 27, 1105-1114, https://doi.org/10.1038/s41594-020-0506-5.
  91. Goundaroulis, D., Lieberman Aiden, E., and Stasiak, A. (2020) Chromatin is frequently unknotted at the megabase scale, Biophys. J., 118, 2268-2279, https://doi.org/10.1016/j.bpj.2019.11.002.
  92. Hildebrand, E. M., Polovnikov, K., Dekker, B., Liu, Y., Lafontaine, D. L., Nicole Fox, A., Li, Y., Venev, S. V., Mirny, L., and Dekker, J. (2022) Chromosome decompaction and cohesin direct Topoisomerase II activity to establish and maintain an unentangled interphase genome, bioRxiv, https://doi.org/10.1101/2022.10.15.511838.
  93. Portugal, J., and Rodríguez-Campos, A. (1996) T7 RNA polymerase cannot transcribe through a highly knotted DNA template, Nucleic Acids Res., 24, 4890-4894, https://doi.org/10.1093/nar/24.24.4890.
  94. Sjögren, C., and Nasmyth, K. (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae, Curr. Biol., 11, 991-995, https://doi.org/10.1016/s0960-9822(01)00271-8.
  95. Watrin, E., and Peters, J.-M. (2006) Cohesin and DNA damage repair, Exp. Cell Res., 312, 2687-2693, https:// doi.org/10.1016/j.yexcr.2006.06.024.
  96. Gelot, C., Guirouilh-Barbat, J., Le Guen, T., Dardillac, E., Chailleux, C., Canitrot, Y., and Lopez, B. S. (2016) The cohesin complex prevents the end joining of distant DNA double-strand ends, Mol. Cell, 61, 15-26, https://doi.org/10.1016/ j.molcel.2015.11.002.
  97. Covo, S., Westmoreland, J. W., Gordenin, D. A., and Resnick, M. A. (2010) Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes, PLoS Genet., 6, e1001006, https:// doi.org/10.1371/journal.pgen.1001006.
  98. Dion, V., Kalck, V., Seeber, A., Schleker, T., and Gasser, S. M. (2013) Cohesin and the nucleolus constrain the mobility of spontaneous repair foci, EMBO Rep., 14, 984-991, https://doi.org/10.1038/embor.2013.142.
  99. Piazza, A., Bordelet, H., Dumont, A., Thierry, A., Savocco, J., Girard, F., and Koszul, R. (2021) Cohesin regulates homology search during recombinational DNA repair, Nat. Cell Biol., 23, 1176-1186, https://doi.org/10.1038/s41556-021-00783-x.
  100. Ström, L., Lindroos, H. B., Shirahige, K., and Sjögren, C. (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair, Mol. Cell, 16, 1003-1015, https://doi.org/10.1016/j.molcel. 2004.11.026.
  101. Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J. E., and Koshland, D. (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain, Mol. Cell, 16, 991-1002, https://doi.org/10.1016/j.molcel.2004.11.027.
  102. Arnould, C., Rocher, V., Finoux, A.-L., Clouaire, T., Li, K., Zhou, F., Caron, P., Mangeot, P. E., Ricci, E. P., Mourad, R., Haber, J. E., Noordermeer, D., and Legube, G. (2021) Loop extrusion as a mechanism for formation of DNA damage repair foci, Nature, 590, 660-665, https://doi.org/10.1038/s41586-021-03193-z.
  103. Collins, P. L., Purman, C., Porter, S. I., Nganga, V., Saini, A., Hayer, K. E., Gurewitz, G. L., Sleckman, B. P., Bednarski, J. J., Bassing, C. H., and Oltz, E. M. (2020) DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner, Nat. Commun., 11, 3158, https://doi.org/10.1038/s41467-020-16926-x.
  104. Arnould, C., Rocher, V., Saur, F., Bader, A. S., Muzzopappa, F., Collins, S., Lesage, E., Le Bozec, B., Puget, N., Clouaire, T., Mangeat, T., Mourad, R., Ahituv, N., Noordermeer, D., Erdel, F., Bushell, M., Marnef, A., and Legube, G. (2023) Chromatin compartmentalization regulates the response to DNA damage, Nature, 623, 183-192, https://doi.org/10.1038/s41586-023-06635-y.
  105. Gasperini, M., Tome, J. M., and Shendure, J. (2020) Towards a comprehensive catalogue of validated and target-linked human enhancers, Nat. Rev. Genet., 21, 292-310, https://doi.org/10.1038/s41576-019-0209-0.
  106. Karr, J. P., Ferrie, J. J., Tjian, R., and Darzacq, X. (2022) The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication, Genes Dev., 36, 7-16, https://doi.org/10.1101/gad.349160.121.
  107. Hsieh, T.-H. S., Cattoglio, C., Slobodyanyuk, E., Hansen, A. S., Rando, O. J., Tjian, R., and Darzacq, X. (2020) Resolving the 3D landscape of transcription-linked mammalian chromatin folding, Mol. Cell, 78, 539-553.e8, https:// doi.org/10.1016/j.molcel.2020.03.002.
  108. Hsieh, T.-H. S., Cattoglio, C., Slobodyanyuk, E., Hansen, A. S., Darzacq, X., and Tjian, R. (2022) Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1, Nat. Genet., 54, 1919-1932, https://doi.org/10.1038/s41588-022-01223-8.
  109. Golov, A. K., Gavrilov, A. A., Kaplan, N., and Razin, S. V. (2023) A genome-wide nucleosome-resolution map of promoter-centered interactions in human cells corroborates the enhancer-promoter looping model, bioRxiv, https://doi.org/10.1101/2023.02.12.528105.
  110. Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., Taatjes, D. J., Dekker, J., and Young, R. A. (2010) Mediator and cohesin connect gene expression and chromatin architecture, Nature, 467, 430-435, https://doi.org/10.1038/nature09380.
  111. Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny, L. A. (2016) Formation of chromosomal domains by loop extrusion, Cell Rep., 15, 2038-2049, https://doi.org/10.1016/j.celrep.2016.04.085.
  112. Thiecke, M. J., Wutz, G., Muhar, M., Tang, W., Bevan, S., Malysheva, V., Stocsits, R., Neumann, T., Zuber, J., Fraser, P., Schoenfelder, S., Peters, J.-M., and Spivakov, M. (2020) Cohesin-dependent and -independent mechanisms mediate chromosomal contacts between promoters and enhancers, Cell Rep., 32, 107929, https://doi.org/10.1016/ j.celrep.2020.107929.
  113. Aljahani, A., Hua, P., Karpinska, M. A., Quililan, K., Davies, J. O. J., and Oudelaar, A. M. (2022) Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF, Nat. Commun., 13, 2139, https://doi.org/10.1038/s41467-022-29696-5.
  114. Song, W., Sharan, R., and Ovcharenko, I. (2019) The first enhancer in an enhancer chain safeguards subsequent enhancer-promoter contacts from a distance, Genome Biol., 20, 197, https://doi.org/10.1186/s13059-019-1808-y.
  115. Chakraborty, S., Kopitchinski, N., Zuo, Z., Eraso, A., Awasthi, P., Chari, R., Mitra, A., Tobias, I. C., Moorthy, S. D., Dale, R. K., Mitchell, J. A., Petros, T. J., and Rocha, P. P. (2023) Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness, Nat. Genet., 55, 280-290, https://doi.org/10.1038/s41588-022-01295-6.
  116. Northcott, P. A., Lee, C., Zichner, T., Stütz, A. M., Erkek, S., Kawauchi, D., Shih, D. J. H., Hovestadt, V., Zapatka, M., Sturm, D., Jones, D. T. W., Kool, M., Remke, M., Cavalli, F. M. G., Zuyderduyn, S., Bader, G. D., VandenBerg, S., Esparza, L. A., Ryzhova, M., Wang, W., Wittmann, A., Stark, S., Sieber, L., Seker-Cin, H., Linke, L., et al. (2014) Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma, Nature, 511, 428-434, https://doi.org/10.1038/ nature13379.
  117. Lupiáñez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., Borschiwer, M., Haas, S. A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., Spielmann, M., Visel, A., and Mundlos, S. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions, Cell, 161, 1012-1025, https://doi.org/10.1016/ j.cell.2015.04.004.
  118. Franke, M., Ibrahim, D. M., Andrey, G., Schwarzer, W., Heinrich, V., Schöpflin, R., Kraft, K., Kempfer, R., Jerković, I., Chan, W.-L., Spielmann, M., Timmermann, B., Wittler, L., Kurth, I., Cambiaso, P., Zuffardi, O., Houge, G., Lambie, L., Brancati, F., Pombo, A., Vingron, M., Spitz, F., and Mundlos, S. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications, Nature, 538, 265-269, https://doi.org/10.1038/nature19800.
  119. Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289-293, https://doi.org/10.1126/science.1181369.
  120. Riggs, A. D. (1990) DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function, Philos. Trans. R. Soc. Lond. B Biol. Sci., 326, 285-297, https:// doi.org/10.1098/rstb.1990.0012.
  121. Alipour, E., and Marko, J. F. (2012) Self-organization of domain structures by DNA-loop-extruding enzymes, Nucleic Acids Res., 40, 11202-11212, https://doi.org/10.1093/nar/gks925.
  122. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J., and Yu, H. (2019) Human cohesin compacts DNA by loop extrusion, Science, 366, 1345-1349, https://doi.org/10.1126/science.aaz4475.
  123. Davidson, I. F., Bauer, B., Goetz, D., Tang, W., Wutz, G., and Peters, J.-M. (2019) DNA loop extrusion by human cohesin, Science, 366, 1338-1345, https://doi.org/10.1126/science.aaz3418.
  124. Bauer, B. W., Davidson, I. F., Canena, D., Wutz, G., Tang, W., Litos, G., Horn, S., Hinterdorfer, P., and Peters, J.-M. (2021) Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism, Cell, 184, 5448-5464.e22, https://doi.org/10.1016/j.cell.2021.09.016.
  125. Davidson, I. F., Barth, R., Zaczek, M., van der Torre, J., Tang, W., Nagasaka, K., Janissen, R., Kerssemakers, J., Wutz, G., Dekker, C., and Peters, J.-M. (2023) CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion, Nature, 616, 822-827, https://doi.org/10.1038/s41586-023-05961-5.
  126. Shaltiel, I. A., Datta, S., Lecomte, L., Hassler, M., Kschonsak, M., Bravo, S., Stober, C., Ormanns, J., Eustermann, S., and Haering, C. H. (2022) A hold-and-feed mechanism drives directional DNA loop extrusion by condensin, Science, 376, 1087-1094, https://doi.org/10.1126/science.abm4012.
  127. Higashi, T. L., Pobegalov, G., Tang, M., Molodtsov, M. I., and Uhlmann, F. (2021) A Brownian ratchet model for DNA loop extrusion by the cohesin complex, Elife, 10, e67530, https://doi.org/10.7554/eLife.67530.
  128. Barth, R., Davidson, I., van der Torre, J., Taschner, M., Gruber, S., Peters, J.-M., and Dekker, C. (2023) SMC motor proteins extrude DNA asymmetrically and contain a direction switch, bioRxiv, https://doi.org/10.1101/2023.12.21. 572892.
  129. Barth, R., Pradhan, B., Kim, E., Davidson, I. F., van der Torre, J., Peters, J.-M., and Dekker, C. (2023) Testing pseudotopological and nontopological models for SMC-driven DNA loop extrusion against roadblock-traversal experiments, Sci. Rep., 13, 8100, https://doi.org/10.1038/s41598-023-35359-2.
  130. Golov, A. K., Golova, A. V., Gavrilov, A. A., and Razin, S. V. (2021) Sensitivity of cohesin-chromatin association to high-salt treatment corroborates non-topological mode of loop extrusion, Epigenetics Chromatin, 14, 36, https:// doi.org/10.1186/s13072-021-00411-w.
  131. Higashi, T. L., Eickhoff, P., Sousa, J. S., Locke, J., Nans, A., Flynn, H. R., Snijders, A. P., Papageorgiou, G., O’Reilly, N., Chen, Z. A., O’Reilly, F. J., Rappsilber, J., Costa, A., and Uhlmann, F. (2020) A structure-based mechanism for DNA entry into the cohesin ring, Mol. Cell, 79, 917-933.e9, https://doi.org/10.1016/j.molcel.2020.07.013.
  132. Muir, K. W., Li, Y., Weis, F., and Panne, D. (2020) The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening, Nat. Struct. Mol. Biol., 27, 233-239, https://doi.org/10.1038/s41594-020-0379-7.
  133. Chapard, C., Jones, R., van Oepen, T., Scheinost, J. C., and Nasmyth, K. (2019) Sister DNA entrapment between juxtaposed Smc heads and Kleisin of the cohesin complex, Mol. Cell, 75, 224-237.e5, https://doi.org/10.1016/ j.molcel.2019.05.023.
  134. Bürmann, F., Lee, B.-G., Than, T., Sinn, L., O’Reilly, F. J., Yatskevich, S., Rappsilber, J., Hu, B., Nasmyth, K., and Löwe, J. (2019) A folded conformation of MukBEF and cohesin, Nat. Struct. Mol. Biol., 26, 227-236, https://doi.org/10.1038/s41594-019-0196-z.
  135. Bürmann, F., Basfeld, A., Vazquez Nunez, R., Diebold-Durand, M.-L., Wilhelm, L., and Gruber, S. (2017) Tuned SMC arms drive chromosomal loading of prokaryotic condensin, Mol. Cell, 65, 861-872.e9, https://doi.org/10.1016/ j.molcel.2017.01.026.
  136. Diebold-Durand, M.-L., Lee, H., Ruiz Avila, L. B., Noh, H., Shin, H.-C., Im, H., Bock, F. P., Bürmann, F., Durand, A., Basfeld, A., Ham, S., Basquin, J., Oh, B.-H., and Gruber, S. (2017) Structure of full-length SMC and rearrangements required for chromosome organization, Mol. Cell, 67, 334-347.e5, https://doi.org/10.1016/j.molcel.2017.06.010.
  137. Marko, J. F., De Los Rios, P., Barducci, A., and Gruber, S. (2019) DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes, Nucleic Acids Res., 47, 6956-6972, https:// doi.org/10.1093/nar/gkz497.
  138. Terakawa, T., Bisht, S., Eeftens, J. M., Dekker, C., Haering, C. H., and Greene, E. C. (2017) The condensin complex is a mechanochemical motor that translocates along DNA, Science, 358, 672-676, https://doi.org/10.1126/science.aan6516.
  139. Ryu, J.-K., Katan, A. J., van der Sluis, E. O., Wisse, T., de Groot, R., Haering, C. H., and Dekker, C. (2020) The condensin holocomplex cycles dynamically between open and collapsed states, Nat. Struct. Mol. Biol., 27, 1134-1141, https://doi.org/10.1038/s41594-020-0508-3.
  140. Dekker, C., Haering, C. H., Peters, J.-M., and Rowland, B. D. (2023) How do molecular motors fold the genome, Science, 382, 646-648, https://doi.org/10.1126/science.adi8308.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of cohesin and its involvement in the cohesion of sister chromatids. a – Topological attachment of cohesin rings to sister chromatids during cohesion. b – Scheme of the core trimer forming the cohesin ring; recruitment of additional HAWK subunits to the core trimer. c – Dimerization of the head domains of SMC subunits required for ATP hydrolysis

Download (484KB)
3. Fig. 2. Cohesin activity throughout the cell cycle and the result of chromatin compaction by SMC-dependent extrusion. a – The number of intact cohesin complexes and their activity during the mitotic cycle in vertebrate cells (1) and S. cerevisiae (2). b – Vertebrate metaphase chromosomes formed by the extrusion activity of condensin, which accumulates in the axial structures. The typical X-shaped structure is maintained by residual centromeric cohesion of two metacentric sister chromosomes. c – Compact chromatid-like structures of the “vermicelli” type formed in vertebrate interphase cells by cohesin-dependent extrusion upon suppression of WAPL activity. Cohesin is the main structural component of the axial structures of such chromosomes.

Download (1MB)
4. Fig. 3. Mechanisms of cohesin-dependent extrusion arrest and chromatin folding patterns resulting from blocking and stabilizing extrusion complexes. a – CAR-dependent and CTCF-dependent extrusion arrest. Cohesin engagement with a single site likely converts bidirectional cohesin-dependent extrusion into unidirectional. ESCO1 (Eco1)-dependent acetylation of the SMC3 subunit (SMC3 acetylation is shown as a yellow dot) plays an important role in extrusion arrest and protection of the arrested complex from WAPL. b – Structural loops containing CAR or CTCF sites in the bases are formed due to complete (bidirectional) extrusion arrest. SMC3 acetylation is shown as a yellow dot. c – The position of CAR and CTCF sites in the genome determines the formation of characteristic supranucleosomal patterns of chromatin folding: structural loops and topologically associated domains

Download (846KB)
5. Fig. 4. Features of cohesin-dependent extrusion in the vicinity of a double-strand break (according to Arnould et al. [102]). The appearance of double-strand breaks (1, 2) leads to the emergence of new sites of cohesin-dependent extrusion arrest at the break site (3), the spread of the γH2AX signal from the break site along the topological domain due to unidirectional extrusion (3–5), and the displacement of break sites into the chromosomal territory (5).

Download (1MB)
6. Fig. 5. Molecular aspects of SMC-dependent extrusion. a – Bidirectional extrusion carried out by cohesin monomers (1) and unidirectional extrusion carried out by condensin complexes (2). The “safety belt” most likely takes direct part in stabilizing one of the bases of the loop being formed during condensin-dependent extrusion. b – Hypothetical variants of the binding modality of the SMC complex to the DNA of the growing loop during extrusion

Download (721KB)
7. Fig. 6. Cohesin-dependent extrusion by the coalescence/pumping mechanism. a – Pseudo-topological extrusion by the coalescence/pumping mechanism (according to the Hearing group [126]). b – Non-topological extrusion by the coalescence/pumping mechanism (according to Oldenkamp and Rowland [10]). c – Exchange of two bases of the growing loop during pseudo-topological extrusion can provide frequent switching of the direction of movement and manifest itself as an apparent bidirectionality of the process. In all panels, the pictograms reflect the path of the DNA strand, with the ● and + symbols reflecting the direction of passage of the DNA strand through the plane of the cohesin ring. DNA regions that are or were dynamic bases of the loop in previous stages are shown in red, anchor regions are shown in blue. The dotted regions in the middle of the DNA strand reflect the fundamentally unlimited size of the growing loops.

Download (1MB)
8. Fig. 7. Cohesin-dependent extrusion by bending the “elbows”. a – Extrusion by the Brownian ratchet mechanism (according to Higashi et al. [127]). b – Extrusion by the “row-catch” mechanism (according to Bauer et al. [124]). The dotted parts of the RAD21 subunit correspond to the regions in which the path of the protein chain is shown conditionally for clarity of the figure (in reality, the HAWK subunits remain associated with RAD21 at all stages shown). Other designations are as in Fig. 6

Download (1MB)
9. Fig. 8. Schematic of a hypothetical molecular cascade linking the process of cohesin-dependent extrusion and the establishment of cohesion. a – The originally proposed cascade scheme: coupling of topological loading of cohesin onto DNA with the initiation of extrusion. b – Modified cascade scheme taking into account the accumulated structural data on the extrusion process: coupling of topological loading of cohesin with the termination of extrusion. The central place in the switch between extrusion and topological attachment is occupied by the “DNA-capture” configuration.

Download (1016KB)

Copyright (c) 2024 Russian Academy of Sciences