Features of the humoral and cellular immune response to S- and N-proteins of the SARS-CoV-2 virus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pandemic of a new coronavirus infection, which has lasted for more than 3 years, is still accompanied by frequent mutations in the S-protein of the SARS-CoV-2 virus and the emergence of new variants of the virus, causing new outbreaks of the disease. Of all the coronavirus proteins, the S- and N-proteins are the most immunogenic. The aim of this study was to compare the features of humoral and T-cell immune responses to the SARS-CoV-2 S- and N-protein in people with different histories of interaction with this virus. The following were examined: 27 people who had COVID-19, 23 twice vaccinated with the Sputnik V vaccine and did not have COVID-19, 22 people who had COVID-19, and after 6-12 months twice vaccinated with the Sputnik V vaccine, and 25 people who recovered from COVID-19 twice. The level of antibodies was determined by enzyme immunoassay, cellular immunity was determined by the expression of CD107a on CD8high lymphocytes after they recognized antigens of the SARS-CoV-2 virus. It has been shown that the humoral immune response to the N-protein is formed mainly by short-lived plasma cells synthesizing IgG antibodies of all four subclasses with a gradual switch from IgG3 to IgG1. The response to the S-protein is represented by both short-lived plasma cells formed at the beginning of the response (IgG1 and IgG3 subclasses) and long-lived plasma cells (IgG1 subclass). The dynamics of the level of antibodies synthesized by short-lived plasma cells is described by the Fisher equation, and the Erlang equation is more suitable for describing the level of antibodies synthesized by long-lived plasma cells. The level of antibodies in the groups with hybrid immunity exceeds the level with post-vaccination immunity, and in the group with breakthrough immunity it exceeds both post-infection and post-vaccination immunity. Cellular immunity to the S- and N-proteins of the SARS-CoV-2 virus differs somewhat depending on the methods of induction of this immunity (vaccination or disease). Importantly, heterologous CD8+ T cell immune responses to the N-protein of other coronaviruses may be involved in immune defense against SARS-CoV-2.

Full Text

Restricted Access

About the authors

Z. E. Afridonova

Gabrichevsky Research Institute for Epidemiology and Microbiology

Author for correspondence.
Email: toptyginaanna@rambler.ru
Russian Federation, 125212, Moscow

A. P. Toptygina

Gabrichevsky Research Institute for Epidemiology and Microbiology; Lomonosov Moscow State University

Email: toptyginaanna@rambler.ru
Russian Federation, 125212, Moscow; 119991, Moscow

I. S. Mikhaylov

Federal State Budgetary Educational Institution of Higher Education National Research University “MPEI”

Email: toptyginaanna@rambler.ru
Russian Federation, 111250, Moscow

References

  1. Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., and Katzourakis, A. (2023) The evolution of SARS-CoV-2, Nat. Rev. Microbiol., 21, 361-379, https://doi.org/10.1038/s41579-023-00878-2.
  2. Meyer, B., Drosten, C., and Müller, M. A. (2014) Serological assays for emerging coronaviruses: challenges and pitfalls, Virus Res., 194, 175-183, https://doi.org/10.1016/j.virusres.2014.03.018.
  3. Sun, B., Feng, Y., Mo, X., Zheng, P., Wang, Q., Li, P., Peng, P., Liu, X., Chen, Z., Huang, H., Zhang, F., Luo, W., Niu, X., Hu, P., Wang, L., Peng, H., Huang, Z., Feng, L., Li, F., Zhang, F., Li, F., Zhong, N., and Chen, L. (2020) Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients, Emerg. Microbes Infect., 9, 940-948, https://doi.org/10.1080/22221751.2020.1762515.
  4. Qu, J., Wu, C., Li, X., Zhang, G., Jiang, Z., Li, X., Zhu, Q., and Liu, L. (2020) Profile of immunoglobulin G and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 71, 2255-2258, https://doi.org/10.1093/cid/ciaa489.
  5. Rayati Damavandi, A., Dowran, R., Al Sharif, S., Kashanchi, F., and Jafari, R. (2022) Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy, Med. Microbiol. Immunol., 211, 79-103, https://doi.org/10.1007/s00430-022-00729-6.
  6. Wang, Q., Ye, S. B., Zhou, Z. J., Song, A. L., Zhu, X., Peng, J. M., Liang, R. M., Yang, C. H., Yu, X. W., Huang, X., Yu, J., Qiu, Y., and Ge, X. Y. (2023) Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization, J. Med. Virol., 1, e28407, https://doi.org/10.1002/jmv.28407.
  7. He, Y., Zhou, Y., Wu, H., Kou, Z., Liu, S., and Jiang, S. (2004) Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus, J. Clin. Microbiol., 42, 5309-5314, https://doi.org/10.1128/JCM.42.11.5309-5314.2004.
  8. Masters, P. S., and Sturman, L. S. (1990) Background Paper Functions of the Coronavirus Nucleocapsid Protein, in Coronaviruses and Their Diseases, Springer, Berlin/Heidelberg, Germany, pp. 235-238.
  9. Batra, M., Tian, R., Zhang, C., Clarence, E., Sacher, C. S., Miranda, J. N., De La Fuente, J. R. O., Mathew, M., Green, D., Patel, S., Bastidas, M. V. P., Haddadi, S., Murthi, M., Gonzalez, M. S., Kambali, S., Santos, K. H. M., Asif, H., Modarresi, F., Faghihi, M., and Mirsaeidi, M. (2021) Role of IgG against N-protein of SARS-CoV2 in COVID19 clinical outcomes, Sci. Rep., 11, 3455, https://doi.org/10.1038/s41598-021-83108-0.
  10. Zhou, R., To, K. K., Wong, Y. C., Liu, L., Zhou, B., Li, X., Huang, H., Mo, Y., Luk, T. Y., Lau, T. T., Yeung, P., Chan, W. M., Wu, A. K., Lung, K. C., Tsang, O. T., Leung, W. S., Hung, I. F., Yuen, K. Y., and Chen, Z. (2020) Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses, Immunity, 53, 864-877.e865, https://doi.org/10.1016/j.immuni. 2020.07.026.
  11. Ng, O. W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., Bertoletti, A., and Tan, Y. J. (2016) Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection, Vaccine, 34, 2008-2014, https://doi.org/10.1016/ j.vaccine.2016.02.063.
  12. Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A., Chng, M. H. Y., Lin, M., Tan, N., Linster, M., Chia, W. N., Chen, M. C., Wang, L.-F., Ooi, E. E., Kalimuddin, S., Tambyah, P. A., Low, J. G.-H., Tan, Y.-J., and Bertoletti, A. (2020) SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls, Nature, 584, 457-462, https://doi.org/10.1038/s41586-020-2550-z.
  13. Oliveira, S. C., de Magalhães, M. T. Q., and Homan, E. J. (2020) Immunoinformatic analysis of SARS-CoV-2 nucleocapsid protein and identification of COVID-19 vaccine targets, Front. Immunol., 11, 587615, https://doi.org/10.3389/fimmu.2020.587615.
  14. Топтыгина А. П., Пухальский А. Л., Мамаева Т. А., Алешкин В. А. (2004) Спектр субклассов противокоревых иммуноглобулинов G у лиц, перенесших корь, Бюлл. Эксп. Биол., 137, 293-295, https://doi.org/10.1023/B:BEBM.0000031564.27747.b4.
  15. Топтыгина А. П., Семикина Е. Л., Закиров Р. Ш., Афридонова З. Э. (2022) Сопоставление гуморального и клеточного иммунитета у переболевших COVID-19, Инфекц. Иммун., 12, 495-504, https://doi.org/10.15789/2220-7619-COT-1809.
  16. Ren, L., Zhang, L., Chang, D., Wang, J., Hu, Y., Chen, H., Guo, L., Wu, C., Wang, C., Wang, Y., Wang, Y., Wang, G., Yang, S., de la Cruz, C. S., Sharma, L., Wang, L., Zhang, D., and Wang, J. (2020) The kinetics of humoral response and its relationship with the disease severity in COVID-19, Commun. Biol., 3, 780, https://doi.org/10.1038/s42003-020-01526-8.
  17. Топтыгина А. П., Алешкин В. А. (2013) Сопоставление первичного и вторичного гуморального иммунного ответа на вакцинацию «Приорикс», Инфекц. Иммун., 3, 359-364.
  18. Korobova, Z. R., Zueva, E. V., Arsentieva, N. A., Batsunov, O. K., Liubimova, N. E., Khamitova, I. V., Kuznetsova, R. N., Savin, T. V., Totolian, A. A., Rubinstein, A. A., Stanevich, O. V., Kulikov, A. N., and Pevtsov, D. E. (2022) Changes in anti-SARS-CoV-2 IgG subclasses over time and in association with diseases severity, Viruses, 14, 941, https://doi.org/10.3390/v14050941.
  19. Wang, X., Guo, X., Xin, Q., Pan, Y., Hu, Y., Li, J., Chu, Y., Feng, Y., and Wang, Q. (2020) Neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 in coronavirus disease 2019 in patients and convalescent patients, Clin. Infect. Dis., 71, 2688-2694, https://doi.org/10.1093/cid/ciaa721.
  20. Sariol, A., and Perlman, S. (2020) Lessons for COVID-19 immunity from other coronavirus infections, Immunity, 53, 248-263, https://doi.org/10.1016/j.immuni.2020.07.005.
  21. Shrock, E., Fujimura, E., Kula, T., Timms, R. T., Lee, I. H., Leng, Y., Robinson, M. L., Sie, B. M., Li, M. Z., Chen, Y., Logue, J., Zuiani, A., McCulloch, D., Lelis, F. J. N., Clarke, W. A., Caturegli, P., Laeyendecker, O., Piechocka-Trocha, A., Li, J. Z., Khatri, A., Chu, H. Y., Villani, A.-C., Kays, K., Goldberg, M. B., Hacochen, N., Filbin, M. R., Yu, X. G., Walker, B. D., Wesemann, D. R., Larman, H. B., Lederer, J. A., and Elledge, S. J. (2020) Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity, Science, 370, eabd4250, https://doi.org/10.1126/science.abd4250.
  22. Peng, Y., Mentzer, A. J., Liu, G., Yao, X., Yin, Z., Dong, D., Dejnirattisai, W., Rostron, T., Supasa, P., Liu, C., López-Camacho, C., Slon-Campos, J., Zhao, Y., Stuart, D. I., Paesen, G. C., Grimes, J. M., Antson, A. A., Bayfield, O. W., Hawkins, D. E., Ker, D. S., Turtle, L., Subramaniam, K., Thomson, P., Zhang, P., Dold, C., Ratcliff, J., Simmonds, P., de Silva, T., Sopp, P., Wellington, D., Rajapaksa, U., Chen, Y. L., Salio, M., Napolitani, G., Paes, W., Borrow, P., Kessler, B., Fry, J. W., Schwabe, N. F., Semple, M. G., Baillie, K. J., Moore, S., Openshaw, P. J., Ansari, A., Dunachie, S., Barnes, E., Frater, J., Kerr, G., Goulder, P., Lockett, T., Levin, R., Cornall, R. J., Conlon, C., Klenerman, P., McMichael, A., Screaton, G., Mongkolsapaya, J., Knight, J. C., Ogg, G., and Dong, T. (2020) Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19, Nat. Immunol., 21, 1336-1345, https:// doi.org/10.1038/s41590-020-0782-6.
  23. Swadling, L., Diniz, M. O., Schmidt, N. M., Amin, O. E., Chandran, A., Shaw, E., Pade, C., Gibbons, J. M., le Bert, N., Tan, A. T., Jeffery-Smith, A., Tan, C. C. S., Tham, C. Y. L., Kucykowicz, S., Aidoo-Micah, G., Rosenheim, J., Davies, J., Johnson, M., Jensen, M. P., Joy, G., McCoy, L. E., Valdes, A. M., Chain, B. M., Goldblatt, D., Altman, D. M., Boyton, R. J., Manisty, C., Treibel, T. A., Moon, J. C., van Dorp, L., Balloux, F., McKnight, A., Noursadeghi, M., Bertoletti, A., and Maini, M. K. (2022) Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2, Nature, 601, 110-117, https://doi.org/10.1038/s41586-021-04186-8.
  24. Schwarzkopf, S., Krawczyk, A., Knop, D., Klump, H., Heinold, A., Heinemann, F. M., Thümmler, L., Temme, C., Breyer, M., Witzke, O., Dittmer, U., Lenz, V., Horn, P. A., and Lindemann, M. (2021) Cellular immunity in COVID-19 convalescents with PCR-confirmed infection but with undetectable SARS-CoV-2-specific IgG, Emerg. Infect. Dis., 27, 122-129, https://doi.org/10.3201/2701.203772.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The level of IgG antibodies to SARS-CoV-2 virus antigens. Curves: 1 – IgG antibodies to the N-protein of the SARS-CoV-2 virus (experimental data); 2 – IgG antibodies to the S-protein of the SARS-CoV-2 virus (experimental data); 3 – Fisher approximation of the level of IgG antibodies to the N-protein of the SARS-CoV-2 virus (short-lived plasmocytes); 4 – Fisher approximation of the level of IgG antibodies to the S-protein of the SARS-CoV-2 virus (short-lived plasmocytes); 5 – Erlang approximation of the level of IgG antibodies to the S-protein of the SARS-CoV-2 virus (long-lived plasmocytes)

Download (108KB)
3. Fig. 2. Dynamics of the spectrum of IgG subclasses of antibodies to SARS-CoV-2 virus antigens. a – N is the protein of the SARS-CoV-2 virus; b – S is the protein of the SARS-CoV-2 virus

Download (139KB)
4. Fig. 3. Comparison of IgG antibody levels to N- and S-protein in patients with COVID-19 (group 1), twice vaccinated with Sputnik V (group 2), who were ill, and after vaccinated with Sputnik V (group 3) and twice with COVID-19 (group 4)

Download (122KB)
5. Fig. 4. Contribution of the IgG1 antibody subclass to the overall Ig response to the N- and S-protein of the SARS-CoV-2 virus

Download (67KB)
6. Fig. 5. Cellular immune response to the N- and S-protein of the SARS-CoV-2 virus

Download (75KB)

Copyright (c) 2024 Russian Academy of Sciences