Post-Integrational DNA Repair of HIV-1 Is Associated with the Activation of DNA-PK and ATM Cellular Protein Kinases and Phosphorylation of Their Targets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Integration of the DNA copy of the HIV-1 genome into the cellular genome results in series of damages, the repair of which is critical for successful viral replication. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate HIV-1 post-integration repair, even though integration does not result in double-strand DNA breaks. In this study, we analyzed changes in the phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056) and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139) and p53 (pSer15) during HIV-1 post-integration repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegration DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between double-strand DNA break repair and postintegration repair of HIV-1.

Full Text

Restricted Access

About the authors

A. N. Anisenko

Lomonosov Moscow State University

Author for correspondence.
Email: a_anisenko@mail.ru
Russian Federation, Moscow

A. A. Nefedova

Lomonosov Moscow State University

Email: a_anisenko@mail.ru
Russian Federation, Moscow

I. I. Kireev

Lomonosov Moscow State University

Email: a_anisenko@mail.ru
Russian Federation, Moscow

M. B. Gottikh

Lomonosov Moscow State University

Email: a_anisenko@mail.ru
Russian Federation, Moscow

References

  1. Lesbats, P., Engelman, A. N., and Cherepanov, P. (2016) Retroviral DNA Integration, Chem. Rev., 116, 12730-12757, https://doi.org/10.1021/acs.chemrev.6b00125.
  2. Vincent, K. A., York-Higgins, D., Quiroga, M., and Brown, P. O. (1990) Host sequences flanking the HIV provirus, Nucleic Acids Res., 18, 6045-6047, https://doi.org/10.1093/nar/18.20.6045.
  3. Vink, C., Groenink, M., Elgersma, Y., Fouchier, R. A., Tersmette, M., and Plasterk, R. H. (1990) Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA, J. Virol., 64, 5626-5627, https://doi.org/10.1128/jvi.64.11.5626-5627.1990.
  4. Княжанская Е. С., Шадрина О. А., Анисенко А. Н., Готтих М. Б. (2016) Роль ДНК-зависимой протеинкиназы в репликации ВИЧ-1, Мол. Биол., 50, 639-654.
  5. Анисенко А. Н., Готтих М. Б. (2019) Участие клеточных систем репарации ДНК в репликации ВИЧ-1, Мол. Биол., 53, 355-366.
  6. Skalka, A. M., and Katz, R. A. (2005) Retroviral DNA integration and the DNA damage response, Cell Death Differ., 12, 971-978, https://doi.org/10.1038/sj.cdd.4401573.
  7. Daniel, R., Katz, R. A., and Skalka, A. M. (1999) A role for DNA-PK in retroviral DNA integration, Science, 284, 644-647, https://doi.org/10.1126/science.284.5414.644.
  8. Daniel, R., Greger, J. G., Katz, R. A., Taganov, K. D., Wu, X., Kappes, J. C., and Skalka, A. M. (2004) Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway, J. Virol., 78, 8573-8581, https://doi.org/10.1128/JVI.78.16.8573-8581.2004.
  9. Smith, J. A., Wang, F. X., Zhang, H., Wu, K. J., Williams, K. J., and Daniel, R. (2008) Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair, Virol. J., 5, 11, https://doi.org/10.1186/1743-422X-5-11.
  10. Lau, A., Swinbank, K. M., Ahmed, P. S., Taylor, D. L., Jackson, S. P., Smith, G. C. M., and O’Connor, M. J. (2005) Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase, Nat. Cell Biol., 7, 493-500, https://doi.org/10.1038/ncb1250.
  11. Knyazhanskaya, E., Anisenko, A., Shadrina, O., Kalinina, A., Zatsepin, T., Zalevsky, A., Mazurov, D., and Gottikh, M. (2019) NHEJ pathway is involved in post-integrational DNA repair due to Ku70 binding to HIV-1 integrase, Retrovirology, 16, 30, https://doi.org/10.1186/s12977-019-0492-z.
  12. Anisenko, A., Nefedova, A., Agapkina, Y., and Gottikh, M. (2023) Both ATM and DNA-PK are the main regulators of HIV-1 post-integrational DNA repair, Int. J. Mol. Sci., 24, 2797, https://doi.org/10.3390/ijms24032797.
  13. Blackford, A. N., and Jackson, S. P. (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response, Mol. Cell, 66, 801-817, https://doi.org/10.1016/j.molcel.2017.05.015.
  14. Anisenko, A. N., Knyazhanskaya, E. S., Zalevsky, A. O., Agapkina, J. Y., Sizov, A. I., Zatsepin, T. S., and Gottikh, M. B. (2017) Characterization of HIV-1 integrase interaction with human Ku70 protein and initial implications for drug targeting, Sci. Rep., 7, 5649, https://doi.org/10.1038/s41598-017-05659-5.
  15. Delelis, O., Carayon, K., Saïb, A., Deprez, E., and Mouscadet, J. F. (2008) Integrase and integration: biochemical activities of HIV-1 integrase, Retrovirology, 5, 114, https://doi.org/10.1186/1742-4690-5-114.
  16. Wu, X., Liu, H., Xiao, H., Conway, J. A., Hehl, E., Kalpana, G. V., Prasad, V., and Kappes, J. C. (1999) Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex, J. Virol., 73, 2126-2135, https://doi.org/10.1128/JVI.73.3.2126-2135.1999.
  17. Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Löbrich, M., and Jeggo, P A. (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation, Cancer Res., 64, 2390-2396, https://doi.org/10.1158/0008-5472.CAN-03-3207.
  18. Rothkamm, K., and Löbrich, M. (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses, Proc. Natl. Acad. Sci. USA, 100, 5057-5062, https://doi.org/10.1073/pnas.0830918100.
  19. Menolfi, D., and Zha, S. (2020) ATM, ATR and DNA-PKcs kinases – the lessons from the mouse models: inhibition ≠ deletion, Cell Biosci., 10, 8, https://doi.org/10.1186/s13578-020-0376-x.
  20. Schlam‐Babayov, S., Bensimon, A., Harel, M., Geiger, T., Aebersold, R., Ziv, Y., and Shiloh, Y. (2021) Phosphoproteomics reveals novel modes of function and inter‐relationships among PIKKs in response to genotoxic stress, EMBO J., 40, e104400, https://doi.org/10.15252/embj.2020104400.
  21. Anisenko, A., Kan, M., Shadrina, O., Brattseva, A., and Gottikh, M. (2020) Phosphorylation targets of DNA-PK and their role in HIV-1 replication, Cells, 9, 1908, https://doi.org/10.3390/cells9081907.
  22. Bensimon, A., Schmidt, A., Ziv, Y., Elkon, R., Wang, S. Y., Chen, D. J., Aebersold, R., and Shiloh, Y. (2010) ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage, Sci. Signal., 3, rs3, https://doi.org/10.1126/scisignal.2001034.
  23. Finzel, A., Grybowski, A., Strasen, J., Cristiano, E., and Loewer, A. (2016) Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage, Mol. Biol. Cell, 27, 2360-2367, https://doi.org/10.1091/mbc.e16-01-0032.
  24. Schlam-Babayov, S., Ziv, Y., and Shiloh, Y. (2021) It takes three to the DNA damage response tango, Mol. Cell. Oncol., 8, 1881395, https://doi.org/10.1080/23723556.2021.1881395.
  25. Lu, H., Zhang, Q., Laverty, D. J., Puncheon, A. C., Augustine, M. M., Williams, G. J., Nagel, Z. D., Chen, B. P. C., and Davis, A. J. (2023) ATM phosphorylates the FATC domain of DNA-PKcs at threonine 4102 to promote non-homologous end joining, Nucleic Acids Res., 51, 6770-6783, https://doi.org/10.1093/nar/gkad505.
  26. Mladenov, E., Fan, X., Paul-Konietzko, K., Soni, A., and Iliakis, G. (2019) DNA-PKcs and ATM epistatically suppress DNA end resection and hyperactivation of ATR-dependent G2-checkpoint in S-phase irradiated cells, Sci. Rep., 9, 14597, https://doi.org/10.1038/s41598-019-51071-6.
  27. Liu, S., Opiyo, S. O., Manthey, K., Glanzer, J. G., Ashley, A. K., Amerin, C., Troksa, K., Shrivastav, M., Nickoloff, J. A., and Oakley, G. G. (2012) Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress, Nucleic Acids Res., 40, 10780-10794, https://doi.org/10.1093/nar/gks849.
  28. Zhou, Y., Lee, J. H., Jiang, W., Crowe, J. L., Zha, S., and Paull, T. T. (2017) Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM, Mol. Cell, 65, 91-104, https://doi.org/10.1016/j.molcel.2016.11.004.
  29. Kurosawa, A. (2021) Autophosphorylation and self-activation of DNA-dependent protein kinase, Genes, 12, 1091, https://doi.org/10.3390/genes12071091.
  30. Hsu, F. M., Zhang, S., and Chen, B. P. C. (2012) Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment, Transl. Cancer Res., 1, 22-34, https://doi.org/10.3978/j.issn.2218-676X.2012.04.01.
  31. Lafont, F., Fleury, F., and Benhelli-Mokrani, H. (2020) DNA-PKcs Ser2056 auto-phosphorylation is affected by an O-GlcNAcylation/phosphorylation interplay, Biochim. Biophys. Acta Gen. Subj., 1864, 129705, https://doi.org/10.1016/j.bbagen.2020.129705.
  32. Chen, B. P. C., Chan, D. W., Kobayashi, J., Burma, S., Asaithamby, A., Morotomi-Yano, K., Botvinick, E., Qin, J., and Chen, D. J. (2005) Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks, J. Biol. Chem., 280, 14709-14715, https://doi.org/10.1074/jbc.M408827200.
  33. Bakkenist, C. J., and Kastan, M. B. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, 421, 499-506, https://doi.org/10.1038/nature01368.
  34. So, S., Davis, A. J., and Chen, D. J. (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites, J. Cell Biol., 187, 977-990, https://doi.org/10.1083/jcb.200906064.
  35. Yuan, Z., Guo, W., Yang, J., Li, L., Wang, M., Lei, Y., Wan, Y., Zhao, X., Luo, N., Cheng, P., Liu, X., Nie, C., Peng, Y., Tong, A., and Wei, Y. (2015) PNAS-4, an early DNA damage response gene, induces S phase arrest and apoptosis by activating checkpoint kinases in lung cancer cells, J. Biol. Chem., 290, 14927, https://doi.org/10.1074/jbc.M115.658419.
  36. Li, J., and Stern, D. F. (2005) Regulation of CHK2 by DNA-dependent protein kinase, J. Biol. Chem., 280, 12041-12050, https://doi.org/10.1074/jbc.M412445200.
  37. Boehme, K. A., Kulikov, R., and Blattner, C. (2008) p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK, Proc. Natl. Acad. Sci. USA, 105, 7785-7790, https://doi.org/10.1073/pnas.0703423105.
  38. Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2, Cell, 91, 325-334, https://doi.org/10.1016/S0092-8674(00)80416-X.
  39. Loughery, J., Cox, M., Smith, L. M., and Meek, D. W. (2014) Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters, Nucleic Acids Res., 42, 7666-7680, https://doi.org/10.1093/nar/gku501.
  40. Podhorecka, M., Skladanowski, A., and Bozko, P. (2010) H2AX phosphorylation: its role in DNA damage response and cancer therapy, J. Nucleic Acids, 2010, 920161, https://doi.org/10.4061/2010/920161.
  41. Liu, S., Shiotani, B., Lahiri, M., Maréchal, A., Tse, A., Leung, C. C. Y., Glover, J. N. M., Yang, X. H., and Zou, L. (2011) ATR autophosphorylation as a molecular switch for checkpoint activation, Mol. Cell, 43, 192-202, https://doi.org/10.1016/j.molcel.2011.06.019.
  42. Kulkarni, A., and Das, K. C. (2008) Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to hyperoxia: ATR-dependent ATM activation, Am. J. Physiol. Lung Cell. Mol. Physiol., 294, 998-1006, https://doi.org/10.1152/ajplung.00004.2008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analysis of protein phosphorylation levels of DNA-PKcs, ATM, ATR, Chk1, Chk2, p53 and H2AX in cells transduced with HIV_wt, HIV_mut or non-transduced control (Cntr), 12 h after addition of lentiviral vectors. The graph shows the levels of the phosphorylated form of the protein in cells transduced with HIV_wt or HIV_mut relative to the nontransduced sample (mean ± SD over three independent repeats). Statistical significance of changes in phosphorylated protein levels was assessed by two-factor ANOVA with Tukey's multiple comparisons correction; ns - no statistical difference, **** p-value < 0.0001

Download (135KB)
3. Fig. 2. Western blot analysis of phosphorylated forms of p53 (pSer15) and H2AX (pSer139). Cntr, non-transduced cells transduced with vector; HIV_wt, HIV_mut, HIV_E152A, HIV_F185A, cells transduced with HIV-1-based vectors with the natural integrase variant or the corresponding mutant form; HIV_wt + Nu7441 and HIV_wt + Ku-55933 samples after transduction of cells with HIV_wt vector were additionally treated with DNA-PKcs inhibitor - Nu7441 (2 μM), or ATM inhibitor - Ku-55933 (5 μM).

Download (93KB)
4. Fig. 3. Kinetics of γH2AX and pSer15-p53 accumulation in HEK293T cells transduced with HIV_wt, HIV_mut or HIV_E152A vectors at 10, 12, 14 and 18.5 h after transduction. a - Western blot analysis; b - quantitative analysis of Western blotting results. The level of γH2AX and pSer15-p53 in cells transduced with HIV_wt 18.5 h after vector addition was taken as 1. The sample labelled as Cntr was not transduced with the vector

Download (177KB)
5. Fig. 4. Accumulation of γH2AX loci in HEK293T cells transduced with HIV-1 genome-based vectors. a-e - Confocal images of γH2AX loci in HEK293T cells untreated (a), treated with 50 μM etoposide for 1 h before fixation (b), transduced with HIV_wt (c), HIV_mut (d), HIV_E152A (e), HIV_F185A (f) vectors at a multiplicity of infection (MOI) of 10. Cell fixation was performed 12 h after transduction. g - Mean number of γH2AX loci per cell (a total of 5000 cells were analysed in three technical repeats for each exposure type); statistical significance of differences was assessed using analysis of variance (ANOVA) with Tukey's correction for multiple comparisons; ns - no differences, *** p-value < 0.001, **** p-value < 0.0001; h - mean fluorescence intensity of γH2AX loci; statistical significance of differences was assessed using t-test, ** p-value < 0.01

Download (450KB)
6. Fig. 5. Phosphorylation of proteins from cellular response systems to double-stranded DNA breaks during HIV-1 post-integration repair. HIV-1 integrase, located at HIV-1 genome insertion sites and therefore labelling DNA damage, attracts the heterodimeric Ku70-Ku80 complex. This complex is strictly required for the recruitment of DNA-PK and ATM and the subsequent activation of these kinases at sites of DNA damage induced by HIV-1 integration. DNA-PK and ATM are autophosphorylated by pSer2056 and pSer1981. Kinases activated during PIR phosphorylate H2AX and Chk2 targets, but not p53. ATR is not involved in PIR and is not activated

Download (100KB)

Copyright (c) 2024 Russian Academy of Sciences