The C886T Mutation in the TH Gene Reduces the Activity of Tyrosine Hydroxylase in the Brain of Mice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tyrosine hydroxylase (TH) catalyzes hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine, the initial and rate-limiting step in the synthesis of dopamine, noradrenaline, and adrenaline. Mutations in the human TH gene are associated with hereditary motor disorders. The common C886T mutation identified in the mouse Th gene results in the R278H substitution in the enzyme molecule. We investigated the impact of this mutation on the TH activity in the mouse midbrain. The TH activity in the midbrain of Mus musculus castaneus (CAST) mice homozygous for the 886C allele was higher compared to C57BL/6 and DBA/2 mice homozygous for the 886T allele. Notably, this difference in the enzyme activity was not associated with changes in the Th gene mRNA levels and TH protein content. Analysis of the TH activity in the midbrain in mice from the F2 population obtained by crossbreeding of C57BL/6 and CAST mice revealed that the 886C allele is associated with a high TH activity. Moreover, this allele showed complete dominance over the 886T allele. However, the C886T mutation did not affect the levels of TH protein in the midbrain. These findings demonstrate that the C886T mutation is a major genetic factor determining the activity of TH in the midbrain of common laboratory mouse strains. Moreover, it represents the first common spontaneous mutation in the mouse Th gene whose influence on the enzyme activity has been demonstrated. These results will help to understand the role of TH in the development of adaptive and pathological behavior, elucidate molecular mechanisms regulating the activity of TH, and explore pharmacological agents for modulating its function.

Full Text

Restricted Access

About the authors

I. Alsallum

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: v_kulikov@bionet.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

V. S. Moskalyuk

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: v_kulikov@bionet.nsc.ru
Russian Federation, Novosibirsk

I. A. Rakhov

Novosibirsk State University

Email: v_kulikov@bionet.nsc.ru
Russian Federation, Novosibirsk

D. V. Bazovkina

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: v_kulikov@bionet.nsc.ru
Russian Federation, Novosibirsk

A. V. Kulikov

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: v_kulikov@bionet.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Chinta, S. J., and Andersen, J. K. (2005) Dopaminergic neurons, Int. J. Biochem. Cell Biol., 37, 942-946, https:// doi.org/10.1016/j.biocel.2004.09.009.
  2. Björklund, A., and Dunnett, S. B. (2007) Dopamine neuron systems in the brain: an update, Trends Neurosci., 30, 194-202, https://doi.org/10.1016/j.tins.2007.03.006.
  3. Klein, M. O., Battagello, D. S., Cardoso, A. R., Hauser, D. N., Bittencourt, J. C., and Correa, R. G. (2019) Dopamine: functions, signaling, and association with neurological diseases, Cell. Mol. Neurobiol., 39, 31-59, https://doi.org/10.1007/s10571-018-0632-3.
  4. Channer, B., Matt, S. M., Nickoloff-Bybel, E. A., Pappa, V., Agarwal, Y., Wickman, J., and Gaskill, P. J. (2023) Dopamine, immunity, and disease, Pharmacol. Rev., 75, 62-158, https://doi.org/10.1124/pharmrev.122.000618.
  5. Tripp, G., and Wickens, J. R. (2009) Neurobiology of ADHD, Neuropharmacology, 57, 579-589, https://doi.org/ 10.1016/j.neuropharm.2009.07.026.
  6. Del Campo, N., Chamberlain, S. R., Sahakian, B. J., and Robbins, T. W. (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder, Biol. Psychiatry, 69, e145-157, https://doi.org/10.1016/j.biopsych.2011.02.036.
  7. Faraone, S. V. (2018) The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities, Neurosci. Biobehav. Rev., 87, 255-270, https://doi.org/10.1016/j.neubiorev.2018.02.001.
  8. Ribot, B., Aupy, J., Vidailhet, M., Mazère, J., Pisani, A., Bezard, E., Guehl, D., and Burbaud, P. (2019) Dystonia and dopamine: from phenomenology to pathophysiology, Prog. Neurobiol., 182, 101678, https://doi.org/10.1016/ j.pneurobio.2019.101678.
  9. Cherian, A., Paramasivan, N. K., and Divya, K. P. (2021) Dopa-responsive dystonia, DRD-plus and DRD look-alike: a pragmatic review, Acta Neurol. Belg., 121, 613-623, https://doi.org/10.1007/s13760-020-01574-1.
  10. Scarduzio, M., Hess, E. J., Standaert, D. G., and Eskow Jaunarajs, K. L. (2022) Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia, Neurobiol. Dis., 166, 105650, https://doi.org/10.1016/j.nbd.2022.105650.
  11. Lander, M., Bastiampillai, T., and Sareen, J. (2018) Review of withdrawal catatonia: what does this reveal about clozapine? Transl. Psychiatry, 8, 139, doi: 10.1038/s41398-018-0192-9.
  12. Slavnic, B., Barnett, B. S., McIntire, S., Becker, R., Saba, S., Vellanki, K. D., Honaker, L., Weleff, J., and Carroll, B. T. (2023) Methamphetamine-associated catatonia: case series and systematic review of the literature from 1943-2020, Ann. Clin. Psychiatry, 35, 167-177, https://doi.org/10.12788/acp.0116.
  13. Puig, M. V., Antzoulatos, E. G., and Miller, E. K. (2014) Prefrontal dopamine in associative learning and memory, Neuroscience, 282, 217-229, https://doi.org/10.1016/j.neuroscience.2014.09.026.
  14. Zafiri, D., and Duvarci, S. (2022) Dopaminergic circuits underlying associative aversive learning, Front. Behav. Neurosci., 16, 1041929, https://doi.org/10.3389/fnbeh.2022.1041929.
  15. Kourosh-Arami, M., Komaki, A., and Zarrindast, M. R. (2023) Dopamine as a potential target for learning and memory: contributing to related neurological disorders, CNS Neurol. Disord. Drug Targets, 22, 558-576, https://doi.org/10.2174/1871527321666220418115503.
  16. Baik, J. H. (2013) Dopamine signaling in reward-related behaviors, Front. Neural Circuits, 7, 152, https://doi.org/ 10.3389/fncir.2013.00152.
  17. Hou, H., Wang, C., Jia, S., Hu, S., and Tian, M. (2014) Brain dopaminergic system changes in drug addiction: a review of positron emission tomography findings, Neurosci. Bull., 30, 765-776, https://doi.org/10.1007/s12264-014-1469-5.
  18. Solinas, M., Belujon, P., Fernagut, P. O., Jaber, M., and Thiriet, N. (2019) Dopamine and addiction: what have we learned from 40 years of research, J. Neural. Transm. (Vienna), 126, 481-516, https://doi.org/10.1007/s00702-018-1957-2.
  19. Poisson, C. L., Engel, L., and Saunders, B. T. (2021) Dopamine circuit mechanisms of addiction-like behaviors, Front. Neural Circuits, 15, 752420, https://doi.org/10.3389/fncir.2021.752420.
  20. Kobayashi, K., Morita, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, I., Hata, T., Watanabe, Y., Fujita, K., and Nagatsu, T. (1995) Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem., 270, 27235-27243, https://doi.org/10.1074/jbc.270.45.27235.
  21. Kobayashi, K., Noda, Y., Matsushita, N., Nishii, K., Sawada, H., Nagatsu, T., Nakahara, D., Fukabori, R., Yasoshima, Y., Yamamoto, T., Miura, M., Kano, M., Mamiya, T., Miyamoto, Y., and Nabeshima, T. (2000) Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene, J. Neurosci., 20, 2418-2426, https://doi.org/10.1523/JNEUROSCI.20-06-02418.2000.
  22. Bademci, G., Vance, J. M., and Wang, L. (2012) Tyrosine hydroxylase gene: another piece of the genetic puzzle of Parkinson’s disease, CNS Neurol Disord Drug Targets, 11, 469-481, https://doi.org/10.2174/187152712800792866.
  23. Nagatsu, T., Nakashima, A., Ichinose, H., and Kobayashi, K. (2019) Human tyrosine hydroxylase in Parkinson’s disease and in related disorders, J. Neural Transm. (Vienna), 126, 397-409, https://doi.org/10.1007/s00702-018-1903-3.
  24. Kobayashi, K., and Nagatsu, T. (2005) Molecular genetics of tyrosine 3-monooxygenase and inherited diseases, Biochem. Biophys. Res. Commun., 338, 267-270, https://doi.org/10.1016/j.bbrc.2005.07.186.
  25. Asmus, F., and Gasser, T. (2010) Dystonia-plus syndromes, Eur. J. Neurol., 17, 37-45, https://doi.org/10.1111/j.1468-1331.2010.03049.x.
  26. Lee, W. W., and Jeon, B. S. (2014) Clinical spectrum of dopa-responsive dystonia and related disorders, Curr. Neurol Neurosci. Rep., 14, 461, doi: 10.1007/s11910-014-0461-9.
  27. Dong, H. Y., Feng, J. Y., Yue, X. J., Shan, L., and Jia, F. Y. (2020) Dopa-responsive dystonia caused by tyrosine hydroxylase deficiency: three cases report and literature review, Medicine (Baltimore), 99, e21753, doi: 10.1097/MD.0000000000021753.
  28. Craddock, N., Davé, S., and Greening, J. (2001) Association studies of bipolar disorder, Bipolar Disord., 3, 284-298, https://doi.org/10.1034/j.1399-5618.2001.30604.x.
  29. Beaulieu, J. M., Zhang, X., Rodriguiz, R. M., Sotnikova, T. D., Cools, M. J., Wetsel, W. C., Gainetdinov, R. R., and Caron, M. G. (2008) Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency, Proc. Natl. Acad. Sci. USA, 105, 1333-1338, https://doi.org/10.1073/pnas.0711496105.
  30. Kulikova, E. A., and Kulikov, A. V. (2019) Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models, Expert Opin. Ther. Targets, 23, 655-667, https://doi.org/10.1080/14728222. 2019.1634691.
  31. Fitzpatrick, P. F. (2023) The aromatic amino acid hydroxylases: structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase, Arch. Biochem. Biophys., 735, 109518, https://doi.org/10.1016/j.abb.2023.109518.
  32. Popova, N. K., Kulikov, A. V., Kondaurova, E. M., Tsybko, A. S., Kulikova, E. A., Krasnov, I. B., Shenkman, B. S., Bazhenova, E. Y., Sinyakova, N. A., and Naumenko, V. S. (2015) Risk neurogenes for long-term spaceflight: dopamine and serotonin brain system, Mol. Neurobiol., 51, 1443-1451, https://doi.org/10.1007/s12035-014-8821-7.
  33. Naumenko, V. S., Osipova, D. V., Kostina, E. V., and Kulikov, A. V. (2008) Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain, J. Neurosci. Methods, 170, 197-203, https:// doi.org/10.1016/j.jneumeth.2008.01.008.
  34. Moskaliuk, V. S., Kozhemyakina, R. V., Bazovkina, D. V., Terenina, E., Khomenko, T. M., Volcho, K. P., Salakhutdinov, N. F., Kulikov, A. V., Naumenko, V. S., and Kulikova, E. (2022) On an association between fear-induced aggression and striatal-enriched protein tyrosine phosphatase (STEP) in the brain of Norway rats, Biomed. Pharmacother., 147, 112667, https://doi.org/10.1016/j.biopha.2022.112667.
  35. Arefieva, A. B, Komleva, P. D., Naumenko, V. S., Khotskin, N. V., and Kulikov, A. V. (2023) In vitro and in vivo chaperone effect of (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one on the C1473G mutant tryptophan hydroxylase 2, Biomolecules, 13, 1458, https://doi.org/10.3390/biom13101458.
  36. Куликов А. В., Осипова Д. В., Попова Н. К. (2007) Полиморфизм C1473G в гене tph2 – основной фактор, определяющий генетическую изменчивость активности триптофангидроксилазы-2 в головном мозге мышей, Генетика, 43, 1676-1682.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TH activity (a), Th gene mRNA level (b) and TH protein level (c) in the midbrain of mice of inbred lines C57BL/6 (TT), DBA/2 (TT) and subspecies CAST (CC). Individual values, mean ± errors of the mean are presented. Th gene expression was calibrated to Polr2a gene expression, and TH protein level was calibrated to GAPDH protein level. *** p < 0.001 vs CAST

Download (139KB)
3. Fig. 2. TH activity (a) and protein levels (b) in the midbrain of F2 intercrosses with TT, TC and CC genotypes. Data for males and females are pooled. Individual values, mean ± errors of the mean are presented. TH protein levels are calibrated to GAPDH protein levels. * p < 0.05, *** p < 0.001 vs TT

Download (102KB)

Copyright (c) 2024 Russian Academy of Sciences