Current Methods of Molecular Modeling in the Development of Affine and Specific Agents Binding Proteins (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific research, and disease therapy (as drugs and drug delivery systems). It takes significant time to develop them. For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with special attention focused on the molecular modeling methods used for their analysis and development.

About the authors

Sh. S. Nasaev

Xelari Ltd.

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow

A. R. Mukanov

Xelari Ltd.

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow

I. V. Mishkorez

Xelari Ltd.; Institute of Biomedical Chemistry

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow; 119121 Moscow

I. I. Kuznetsov

Xelari Ltd.

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow

I. V. Leibin

Skolkovo Institute of Science and Technology

Email: veselov@ibmh.msk.su
Russian Federation, 121205 Moscow

V. A. Dolgusheva

Xelari Ltd.

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow

G. A. Pavlyuk

Xelari Ltd.

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow

A. L. Manasyan

Xelari Ltd.

Email: veselov@ibmh.msk.su

R&D Department

Russian Federation, 121601 Moscow

A. V. Veselovsky

Institute of Biomedical Chemistry

Author for correspondence.
Email: veselov@ibmh.msk.su
Russian Federation, 119121 Moscow

References

  1. Berson, S. A., and Yalow, R. S. (1968) General principles of radioimmunoassay, Clin. Chim. Acta, 22, 51-69, https://doi.org/10.1016/0009-8981(68)90247-7.
  2. Rhiel, L., and Becker, S. (2021) Applications of Antibodies in Therapy, Diagnosis, and Science, Springer International Publishing, Cham.
  3. Vengesai, A., Midzi, H., Kasambala, M., Mutandadzi, H., Mduluza-Jokonya, T. L., Rusakaniko, S., Mutapi, F., Naicker, T., and Mduluza, T. (2021) A systematic and meta-analysis review on the diagnostic accuracy of antibodies in the serological diagnosis of COVID-19, Syst. Rev., 10, 155, https://doi.org/10.1186/s13643-021-01689-3.
  4. Stern, M., and Herrmann, R. (2005) Overview of monoclonal antibodies in cancer therapy: present and promise, Crit. Rev. Oncol. Hematol., 54, 11-29, https://doi.org/10.1016/j.critrevonc.2004.10.011.
  5. Bekes, M., Langley, D. R., and Crews, C. M. (2022) PROTAC targeted protein degraders: the past is prologue, Nat. Rev. Drug Discov., 21, 181-200, https://doi.org/10.1038/s41573-021-00371-6.
  6. Rees, A. R. (2020) Understanding the human antibody repertoire, MAbs, 12, 1729683, https://doi.org/10.1080/19420862.2020.1729683.
  7. Liu, J. K. (2014) The history of monoclonal antibody development – progress, remaining challenges and future innovations, Ann. Med. Surg. (Lond), 3, 113-116, https://doi.org/10.1016/j.amsu.2014.09.001.
  8. Yang, O., Prabhu, S., and Ierapetritou, M. (2019) Comparison between batch and continuous monoclonal antibody production and economic analysis, Ind. Eng. Chem. Res., 58, 5851-5863, https://doi.org/10.1021/acs.iecr.8b04717.
  9. Alfaleh, M. A., Alsaab, H. O., Mahmoud, A. B., Alkayyal, A. A., Jones, M. L., Mahler, S. M., and Hashem, A. M. (2020) Phage display derived monoclonal antibodies: from bench to bedside, Front. Immunol., 11, 1986, https://doi.org/10.3389/fimmu.2020.01986.
  10. Bradbury, A., and Pluckthun, A. (2015) Reproducibility: standardize antibodies used in research, Nature, 518, 27-29, https://doi.org/10.1038/518027a.
  11. Chothia, C., and Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins, J. Mol. Biol., 196, 901-917, https://doi.org/10.1016/0022-2836(87)90412-8.
  12. Sircar, A., Sanni, K. A., Shi, J., and Gray, J. J. (2011) Analysis and modeling of the variable region of camelid single-domain antibodies, J. Immunol., 186, 6357-6367, https://doi.org/10.4049/jimmunol.1100116.
  13. Almagro, J. C., Teplyakov, A., Luo, J., Sweet, R. W., Kodangattil, S., Hernandez-Guzman, F., and Gilliland, G. L. (2014) Second antibody modeling assessment (AMA-II), Proteins, 82, 1553-1562, https://doi.org/10.1002/prot.24567.
  14. Zhu, K., and Day, T. (2013) Ab initio structure prediction of the antibody hypervariable H3 loop, Proteins, 81, 1081-1089, https://doi.org/10.1002/prot.24240.
  15. Leem, J., Dunbar, J., Georges, G., Shi, J., and Deane, C. M. (2016) ABodyBuilder: Automated antibody structure prediction with data-driven accuracy estimation, MAbs, 8, 1259-1268, https://doi.org/10.1080/19420862.2016.1205773.
  16. Schoeder, C. T., Schmitz, S., Adolf-Bryfogle, J., Sevy, A. M., Finn, J. A., Sauer, M. F., Bozhanova, N. G., Mueller, B. K., Sangha, A. K., Bonet, J., Sheehan, J. H., Kuenze, G., Marlow, B., Smith, S. T., Woods, H., Bender, B. J., Martina, C. E., del Alamo, D., Kodali, P., Gulsevin, A., et al. (2021) Modeling immunity with Rosetta: methods for antibody and antigen design, Biochemistry, 60, 825-846, https://doi.org/10.1021/acs.biochem.0c00912.
  17. Marcatili, P., Rosi, A., and Tramontano, A. (2008) PIGS: automatic prediction of antibody structures, Bioinformatics, 24, 1953-1954, https://doi.org/10.1093/bioinformatics/btn341.
  18. Roy, A., Kucukural, A., and Zhang, Y. (2010) I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc., 5, 725-738, https://doi.org/10.1038/nprot.2010.5.
  19. Zhu, K., Day, T., Warshaviak, D., Murrett, C., Friesner, R., and Pearlman, D. (2014) Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction, Proteins, 82, 1646-1655, https://doi.org/10.1002/prot.24551.
  20. Whitelegg, N. R., and Rees, A. R. (2000) WAM: an improved algorithm for modelling antibodies on the WEB, Protein Eng., 13, 819-824, https://doi.org/10.1093/protein/13.12.819.
  21. Dunbar, J., Krawczyk, K., Leem, J., Marks, C., Nowak, J., Regep, C., Georges, G., Kelm, S., Popovic, B., and Deane, C. M. (2016) SAbPred: a structure-based antibody prediction server, Nucleic Acids Res., 44, W474-W478, https://doi.org/10.1093/nar/gkw361.
  22. Sircar, A., Kim, E. T., and Gray, J. J. (2009) RosettaAntibody: antibody variable region homology modeling server, Nucleic Acids Res., 37, W474-479, https://doi.org/10.1093/nar/gkp387.
  23. Weitzner, B. D., Kuroda, D., Marze, N., Xu, J., and Gray, J. J. (2014) Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization, Proteins, 82, 1611-1623, https://doi.org/10.1002/prot.24534.
  24. Su, Z. Y. (2014) Ibalizumab-human CD4 receptor interaction: computational alanine scanning molecular dynamics studies, Curr. Comput. Aided Drug Des., 10, 217-225, https://doi.org/10.2174/157340991003150302230124.
  25. Kiyoshi, M., Caaveiro, J. M., Miura, E., Nagatoishi, S., Nakakido, M., Soga, S., Shirai, H., Kawabata, S., and Tsumoto, K. (2014) Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex, PLoS One, 9, e87099, https://doi.org/10.1371/journal.pone.0087099.
  26. Ferdous, S., and Martin, A. C. R. (2018) AbDb: antibody structure database-a database of PDB-derived antibody structures, Database (Oxford), 2018, https://doi.org/10.1093/database/bay040.
  27. Kumar, N., Bajiya, N., Patiyal, S., and Raghava, G. P. S. (2023) Multi-perspectives and challenges in identifying B-cell epitopes, Protein Sci., 32, e4785, https://doi.org/10.1002/pro.4785.
  28. Zeng, X., Bai, G., Sun, C., and Ma, B. (2023) Recent Progress in Antibody Epitope Prediction, Antibodies, 12, 52, https://doi.org/10.3390/antib12030052.
  29. Dai, B., and Bailey-Kellogg, C. (2021) Protein interaction interface region prediction by geometric deep learning, Bioinformatics, 37, 2580-2588, https://doi.org/10.1093/bioinformatics/btab154.
  30. Da Silva, B. M., Myung, Y., Ascher, D. B., and Pires, D. E. V. (2022) epitope3D: a machine learning method for conformational B-cell epitope prediction, Brief. Bioinform., 23, https://doi.org/10.1093/bib/bbab423.
  31. Cia, G., Pucci, F., and Rooman, M. (2023) Critical review of conformational B-cell epitope prediction methods, Brief. Bioinform., 24, https://doi.org/10.1093/bib/bbac567.
  32. Chu, L. S., Ruffolo, J. A., Harmalkar, A., and Gray, J. J. (2024) Flexible protein-protein docking with a multitrack iterative transformer, Protein Sci., 33, e4862, https://doi.org/10.1002/pro.4862.
  33. Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., and Baker, D. (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations, J. Mol. Biol., 331, 281-299, https://doi.org/10.1016/s0022-2836(03)00670-3.
  34. Sircar, A., and Gray, J. J. (2010) SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models, PLoS Comput. Biol., 6, e1000644, https://doi.org/10.1371/journal.pcbi.1000644.
  35. Zhao, J., Nussinov, R., and Ma, B. (2017) Mechanisms of recognition of amyloid-beta (Abeta) monomer, oligomer, and fibril by homologous antibodies, J. Biol. Chem., 292, 18325-18343, https://doi.org/10.1074/jbc.M117.801514.
  36. Guest, J. D., Vreven, T., Zhou, J., Moal, I., Jeliazkov, J. R., Gray, J. J., Weng, Z., and Pierce, B. G. (2021) An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants, Structure, 29, 606-621.e605, https://doi.org/10.1016/j.str.2021.01.005.
  37. Mashiach, E., Nussinov, R., and Wolfson, H. J. (2010) FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking, Nucleic Acids Res., 38, W457-461, https://doi.org/10.1093/nar/gkq373.
  38. Pierce, B., and Weng, Z. (2007) ZRANK: reranking protein docking predictions with an optimized energy function, Proteins, 67, 1078-1086, https://doi.org/10.1002/prot.21373.
  39. Cheng, T. M., Blundell, T. L., and Fernandez-Recio, J. (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking, Proteins, 68, 503-515, https://doi.org/10.1002/prot.21419.
  40. Lorenzen, S., and Zhang, Y. (2007) Identification of near-native structures by clustering protein docking conformations, Proteins, 68, 187-194, https://doi.org/10.1002/prot.21442.
  41. Ritchie, D. W., and Venkatraman, V. (2010) Ultra-fast FFT protein docking on graphics processors, Bioinformatics, 26, 2398-2405, https://doi.org/10.1093/bioinformatics/btq444.
  42. Zhu, F., Bourguet, F. A., Bennett, W. F. D., Lau, E. Y., Arrildt, K. T., Segelke, B. W., Zemla, A. T., Desautels, T. A., and Faissol, D. M. (2022) Large-scale application of free energy perturbation calculations for antibody design, Sci. Rep., 12, 12489, https://doi.org/10.1038/s41598-022-14443-z.
  43. Zhou, Y., Myung, Y., Rodrigues, C. H. M., and Ascher, D. B. (2024) DDMut-PPI: predicting effects of mutations on protein–protein interactions using graph-based deep learning, Nucleic Acids Res., 52, W207-W214, https://doi.org/10.1093/nar/gkae412.
  44. Wang, M., Zhu, D., Zhu, J., Nussinov, R., and Ma, B. (2018) Local and global anatomy of antibody-protein antigen recognition, J. Mol. Recognit., 31, e2693, https://doi.org/10.1002/jmr.2693.
  45. Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., and Vangone, A. (2016) PRODIGY: a web server for predicting the binding affinity of protein-protein complexes, Bioinformatics, 32, 3676-3678, https://doi.org/10.1093/bioinformatics/btw514.
  46. Chowdhury, R., Allan, M. F., and Maranas, C. D. (2018) OptMAVEn-2.0: de novo design of variable antibody regions against targeted antigen epitopes, Antibodies (Basel), 7, 23, https://doi.org/10.3390/antib7030023.
  47. Poosarla, V. G., Li, T., Goh, B. C., Schulten, K., Wood, T. K., and Maranas, C. D. (2017) Computational de novo design of antibodies binding to a peptide with high affinity, Biotechnol. Bioeng., 114, 1331-1342, https://doi.org/10.1002/bit.26244.
  48. Hummer, A. M., Abanades, B., and Deane, C. M. (2022) Advances in computational structure-based antibody design, Curr. Opin. Struct. Biol., 74, 102379, https://doi.org/10.1016/j.sbi.2022.102379.
  49. Yin, R., and Pierce, B. G. (2023) Evaluation of AlphaFold antibody-antigen modeling with implications for improving predictive accuracy, bioRxiv, https://doi.org/10.1101/2023.07.05.547832.
  50. Olsen, T. H., Moal, I. H., and Deane, C. M. (2022) AbLang: an antibody language model for completing antibody sequences, Bioinform. Adv., 2, vbac046, https://doi.org/10.1093/bioadv/vbac046.
  51. Shuai, R. W., Ruffolo, J. A., and Gray, J. J. (2023) IgLM: Infilling language modeling for antibody sequence design, Cell Syst., 14, 979-989 e974, https://doi.org/10.1016/j.cels.2023.10.001.
  52. Akbar, R., Robert, P. A., Pavlovic, M., Jeliazkov, J. R., Snapkov, I., Slabodkin, A., Weber, C. R., Scheffer, L., Miho, E., Haff, I. H., Haug, D. T. T., Lund-Johansen, F., Safonova, Y., Sandve, G. K., and Greiff, V. (2021) A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding, Cell Rep., 34, 108856, https://doi.org/10.1016/j.celrep.2021.108856.
  53. Bertoline, L. M. F., Lima, A. N., Krieger, J. E., and Teixeira, S. K. (2023/02/28) Before and after AlphaFold2: an overview of protein structure prediction, Front. Bioinform., 3, https://doi.org/10.3389/fbinf.2023.1120370.
  54. Lai, P. K., Gallegos, A., Mody, N., Sathish, H. A., and Trout, B. L. (2022) Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics, MAbs, 14, 2026208, https://doi.org/10.1080/19420862.2022.2026208.
  55. Marks, C., Hummer, A. M., Chin, M., and Deane, C. M. (2021) Humanization of antibodies using a machine learning approach on large-scale repertoire data, Bioinformatics, 37, 4041-4047, https://doi.org/10.1093/bioinformatics/btab434.
  56. Grinshpun, B., Thorsteinson, N., Pereira, J. N., Rippmann, F., Nannemann, D., Sood, V. D., and Fomekong Nanfack, Y. (2021) Identifying biophysical assays and in silico properties that enrich for slow clearance in clinical-stage therapeutic antibodies, MAbs, 13, 1932230, https://doi.org/10.1080/19420862.2021.1932230.
  57. Reis, P., Barletta, G. P., Gagliardi, L., Fortuna, S., Soler, M. A., and Rocchia, W. (2022) Antibody-antigen binding interface analysis in the big data era, Front. Mol. Biosci., 9, 945808, https://doi.org/10.3389/fmolb.2022.945808.
  58. Crivianu-Gaita, V., and Thompson, M. (2016) Aptamers, antibody scFv, and antibody Fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements, Biosens. Bioelectron., 85, 32-45, https://doi.org/10.1016/j.bios.2016.04.091.
  59. De Marco, A. (2020) Recombinant expression of nanobodies and nanobody-derived immunoreagents, Protein Expr. Purif., 172, 105645, https://doi.org/10.1016/j.pep.2020.105645.
  60. Zelenovic, N., Filipovic, L., and Popovic, M. (2023) Recent developments in bioprocessing of recombinant antibody fragments, Biochemistry (Moscow), 88, 1191-1204, https://doi.org/10.1134/S0006297923090018.
  61. Fink, M., Schimek, C., Cserjan-Puschmann, M., Reinisch, D., Brocard, C., Hahn, R., and Striedner, G. (2021) Integrated process development: the key to improve Fab production in E. coli, Biotechnol. J., 16, e2000562, https://doi.org/10.1002/biot.202000562.
  62. Mei, Y., Chen, Y., Sivaccumar, J. P., An, Z., Xia, N., and Luo, W. (2022) Research progress and applications of nanobody in human infectious diseases, Front. Pharmacol., 13, 963978, https://doi.org/10.3389/fphar.2022.963978.
  63. Yu, X., Yang, Y. P., Dikici, E., Deo, S. K., and Daunert, S. (2017) Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis, Annu. Rev. Anal. Chem. (Palo Alto Calif.), 10, 293-320, https://doi.org/10.1146/annurev-anchem-061516-045205.
  64. Tang, J., Zhang, C., Castillo, N. C., Lalaurie, C. J., Gao, X., Dalby, P. A., and Kozielski, F. (2023) Crystal structures and molecular dynamics simulations of a humanised antibody fragment at acidic to basic pH, Sci. Rep., 13, 16281, https://doi.org/10.1038/s41598-023-42698-7.
  65. Paloni, M., and Cavallotti, C. (2017) Molecular modeling of the interaction of protein L with antibodies, ACS Omega, 2, 6464-6472, https://doi.org/10.1021/acsomega.7b01123.
  66. Bai, G., Ge, Y., Su, Y., Chen, S., Zeng, X., Lu, H., and Ma, B. (2021) Computational construction of a single-chain bi-paratopic antibody allosterically inhibiting TCR-staphylococcal enterotoxin b binding, Front. Immunol., 12, 732938, https://doi.org/10.3389/fimmu.2021.732938.
  67. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single-chain antigen-binding proteins, Science, 242, 423-426, https://doi.org/10.1126/science.3140379.
  68. Cohen, T., Halfon, M., and Schneidman-Duhovny, D. (2022) NanoNet: rapid and accurate end-to-end nanobody modeling by deep learning, Front. Immunol., 13, 958584, https://doi.org/10.3389/fimmu.2022.958584.
  69. Harmsen, M. M., and De Haard, H. J. (2007) Properties, production, and applications of camelid single-domain antibody fragments, Appl. Microbiol. Biotechnol., 77, 13-22, https://doi.org/10.1007/s00253-007-1142-2.
  70. David, T. I., Pestov, N. B., Korneenko, T. V., and Barlev, N. A. (2023) Non-immunoglobulin synthetic binding proteins for oncology, Biochemistry (Moscow), 88, 1232-1247, https://doi.org/10.1134/S0006297923090043.
  71. Skerra, A. (2000) Engineered protein scaffolds for molecular recognition, J. Mol. Recognit., 13, 167-187, https://doi.org/10.1002/1099-1352(200007/08)13:4<167::AID-JMR502>3.0.CO;2-9.
  72. Moody, P., Chudasama, V., Nathani, R. I., Maruani, A., Martin, S., Smith, M. E., and Caddick, S. (2014) A rapid, site-selective and efficient route to the dual modification of DARPins, Chem. Commun. (Camb.), 50, 4898-4900, https://doi.org/10.1039/c4cc00053f.
  73. Liu, S., Wu, K., and Chen, C. (2022) Obtaining protein foldability information from computational models of AlphaFold2 and RoseTTAFold, Comput. Struct. Biotechnol. J., 20, 4481-4489, https://doi.org/10.1016/j.csbj.2022.08.034.
  74. Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., et al. (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 630, 493-500, https://doi.org/10.1038/s41586-024-07487-w.
  75. Ingraham, J. B., Baranov, M., Costello, Z., Barber, K. W., Wang, W., Ismail, A., Frappier, V., Lord, D. M., Ng-Thow-Hing, C., Van Vlack, E. R., Tie, S., Xue, V., Cowles, S. C., Leung, A., Rodrigues, J. V., Morales-Perez, C. L., Ayoub, A. M., Green, R., Puentes, K., Oplinger, F., et al. (2023) Illuminating protein space with a programmable generative model, Nature, 623, 1070-1078, https://doi.org/10.1038/s41586-023-06728-8.
  76. Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., Bafna, K., Norn, C., Kang, A., Bera, A. K., DiMaio, F., Carter, L., Chow, C. M., Montelione, G. T., Baker, D., Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., et al. (2021) De novo protein design by deep network hallucination, Nature, 600, 7889, https://doi.org/10.1038/s41586-021-04184-w.
  77. Ponomarenko, J., Papangelopoulos, N., Zajonc, D. M., Peters, B., Sette, A., and Bourne, P. E. (2011) IEDB-3D: structural data within the immune epitope database, Nucleic Acids Res., 39, D1164-1170, https://doi.org/10.1093/nar/gkq888.
  78. Schlessinger, A., Ofran, Y., Yachdav, G., and Rost, B. (2006) Epitome: database of structure-inferred antigenic epitopes, Nucleic Acids Res., 34, D777-780, https://doi.org/10.1093/nar/gkj053.
  79. Saha, S., Bhasin, M., and Raghava, G. P. (2005) Bcipep: a database of B-cell epitopes, BMC Genomics, 6, 79, https://doi.org/10.1186/1471-2164-6-79.
  80. Toseland, C. P., Clayton, D. J., McSparron, H., Hemsley, S. L., Blythe, M. J., Paine, K., Doytchinova, I. A., Guan, P., Hattotuwagama, C. K., and Flower, D. R. (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data, Immunome Res., 1, 4, https://doi.org/10.1186/1745-7580-1-4.
  81. Peters, B., Sidney, J., Bourne, P., Bui, H. H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., Nemazee, D., Ponomarenko, J. V., Sathiamurthy, M., Schoenberger, S., Stewart, S., Surko, P., Way, S., Wilson, S., and Sette, A. (2005) The immune epitope database and analysis resource: from vision to blueprint, PLoS Biol., 3, e91, https://doi.org/10.1371/journal.pbio.0030091.
  82. Fleishman, S. J., Corn, J. E., Strauch, E. M., Whitehead, T. A., Karanicolas, J., and Baker, D. (2011) Hotspot-centric de novo design of protein binders, J. Mol. Biol., 413, 1047-1062, https://doi.org/10.1016/j.jmb.2011.09.001.
  83. Fleishman, S. J., Whitehead, T. A., Ekiert, D. C., Dreyfus, C., Corn, J. E., Strauch, E. M., Wilson, I. A., and Baker, D. (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin, Science, 332, 816-821, https://doi.org/10.1126/science.1202617.
  84. Ellington, A. D., and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818-822, https://doi.org/10.1038/346818a0.
  85. Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505-510, https://doi.org/10.1126/science.2200121.
  86. Mironov, A. S., Gusarov, I., Rafikov, R., Lopez, L. E., Shatalin, K., Kreneva, R. A., Perumov, D. A., and Nudler, E. (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria, Cell, 111, 747-756, https://doi.org/10.1016/s0092-8674(02)01134-0.
  87. Sullenger, B. A., Gallardo, H. F., Ungers, G. E., and Gilboa, E. (1991) Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation, J. Virol., 65, 6811-6816, https://doi.org/10.1128/JVI.65.12.6811-6816.1991.
  88. Chen, A., and Yang, S. (2015) Replacing antibodies with aptamers in lateral flow immunoassay, Biosens. Bioelectron., 71, 230-242, https://doi.org/10.1016/j.bios.2015.04.041.
  89. Zhou, J., and Rossi, J. (2017) Aptamers as targeted therapeutics: current potential and challenges, Nat. Rev. Drug Discov., 16, 181-202, https://doi.org/10.1038/nrd.2016.199.
  90. Cho, E. J., Lee, J. W., and Ellington, A. D. (2009) Applications of aptamers as sensors, Annu. Rev. Anal. Chem. (Palo Alto Calif.), 2, 241-264, https://doi.org/10.1146/annurev.anchem.1.031207.112851.
  91. Mahmoud, M., Deigner, H.-P., Mahmoud, M., and Deigner, H.-P. (2015/12/15) Aptamers in diagnostics: replacing or complementing antibodies? J. Bioeng. Bioelectron., 5, https://doi.org/10.4172/2153-0777.1000e129.
  92. Ng, E. W., Shima, D. T., Calias, P., Cunningham, E. T., Jr., Guyer, D. R., and Adamis, A. P. (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease, Nat. Rev. Drug Discov., 5, 123-132, https://doi.org/10.1038/nrd1955.
  93. Kruspe, S., Mittelberger, F., Szameit, K., and Hahn, U. (2014) Aptamers as drug delivery vehicles, ChemMedChem, 9, 1998-2011, https://doi.org/10.1002/cmdc.201402163.
  94. Olson, W. C., Heston, W. D., and Rajasekaran, A. K. (2007) Clinical trials of cancer therapies targeting prostate-specific membrane antigen, Rev. Recent Clin. Trials, 2, 182-190, https://doi.org/10.2174/157488707781662724.
  95. Zhou, J., Swiderski, P., Li, H., Zhang, J., Neff, C. P., Akkina, R., and Rossi, J. J. (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells, Nucleic Acids Res., 37, 3094-3109, https://doi.org/10.1093/nar/gkp185.
  96. Darmostuk, M., Rimpelova, S., Gbelcova, H., and Ruml, T. (2015) Current approaches in SELEX: An update to aptamer selection technology, Biotechnol. Adv., 33, 1141-1161, https://doi.org/10.1016/j.biotechadv.2015.02.008.
  97. Luo, X., McKeague, M., Pitre, S., Dumontier, M., Green, J., Golshani, A., Derosa, M. C., and Dehne, F. (2010) Computational approaches toward the design of pools for the in vitro selection of complex aptamers, RNA, 16, 2252-2262, https://doi.org/10.1261/rna.2102210.
  98. Gevertz, J., Gan, H. H., and Schlick, T. (2005) In vitro RNA random pools are not structurally diverse: a computational analysis, RNA, 11, 853-863, https://doi.org/10.1261/rna.7271405.
  99. Lipi, F., Chen, S., Chakravarthy, M., Rakesh, S., and Veedu, R. N. (2016) In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies, RNA Biol., 13, 1232-1245, https://doi.org/10.1080/15476286.2016.1236173.
  100. Verma, V., Gupta, A., and Chaudhary, V. K. (2020) Emulsion PCR made easy, BioTechniques, 69, 421-426, https://doi.org/10.2144/btn-2019-0161.
  101. Kohlberger, M., and Gadermaier, G. (2022) SELEX: critical factors and optimization strategies for successful aptamer selection, Biotechnol. Appl. Biochem., 69, 1771-1792, https://doi.org/10.1002/bab.2244.
  102. Betz, K., Malyshev, D. A., Lavergne, T., Welte, W., Diederichs, K., Dwyer, T. J., Ordoukhanian, P., Romesberg, F. E., and Marx, A. (2012) KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry, Nat. Chem. Biol., 8, 612-614, https://doi.org/10.1038/nchembio.966.
  103. Boltz, A., Piater, B., Toleikis, L., Guenther, R., Kolmar, H., and Hock, B. (2011) Bi-specific aptamers mediating tumor cell lysis, J. Biol. Chem., 286, 21896-21905, https://doi.org/10.1074/jbc.M111.238261.
  104. Li, Y., and Breaker, R. R. (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group, J. Am. Chem. Soc., 121, 5364-5372, https://doi.org/10.1021/ja990592p.
  105. Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2007) General procedures for avoiding contamination with RNase, CSH Protoc., 2007, pdb ip43, https://doi.org/10.1101/pdb.ip43.
  106. Darfeuille, F. (2004) LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1, Nucleic Acids Res., 32, 3101-3107, https://doi.org/10.1093/nar/gkh636.
  107. Odeh, F., Nsairat, H., Alshaer, W., Ismail, M. A., Esawi, E., Qaqish, B., Bawab, A. A., and Ismail, S. I. (2019) Aptamers chemistry: chemical modifications and conjugation strategies, Molecules, 25, 3, https://doi.org/10.3390/molecules25010003.
  108. Chen, Z., Luo, H., Gubu, A., Yu, S., Zhang, H., Dai, H., Zhang, Y., Zhang, B., Ma, Y., Lu, A., and Zhang, G. (2023) Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding, Front. Cell Dev. Biol., 11, 1091809, https://doi.org/10.3389/fcell.2023.1091809.
  109. Li, X., Chung, L. W., and Li, G. (2016) Multiscale simulations on spectral tuning and the photoisomerization mechanism in fluorescent RNA spinach, J. Chem. Theory Comput., 12, 5453-5464, https://doi.org/10.1021/acs.jctc.6b00578.
  110. Sato, R., Suzuki, K., Yasuda, Y., Suenaga, A., and Fukui, K. (2022) RNAapt3D: RNA aptamer 3D-structural modeling database, Biophys. J., 121, 4770-4776, https://doi.org/10.1016/j.bpj.2022.09.023.
  111. Ahmad, N. A., Mohamed Zulkifli, R., Hussin, H., and Nadri, M. H. (2021) In silico approach for Post-SELEX DNA aptamers: a mini-review, J. Mol. Graph. Model., 105, 107872, https://doi.org/10.1016/j.jmgm.2021.107872.
  112. Buglak, A. A., Samokhvalov, A. V., Zherdev, A. V., and Dzantiev, B. B. (2020) Methods and Applications of In Silico Aptamer Design and Modeling, Int. J. Mol. Sci., 21, https://doi.org/10.3390/ijms21228420.
  113. Kumar, P., and Kumar, A. (2020) Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method, J. Biomol. Struct. Dyn., 38, 3296-3306, https://doi.org/10.1080/07391102.2019.1656109.
  114. Torkamanian-Afshar, M., Nematzadeh, S., Tabarzad, M., Najafi, A., Lanjanian, H., and Masoudi-Nejad, A. (2021) In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm, Mol. Divers., 25, 1395-1407, https://doi.org/10.1007/s11030-021-10192-9.
  115. Bashir, A., Yang, Q., Wang, J., Hoyer, S., Chou, W., McLean, C., Davis, G., Gong, Q., Armstrong, Z., Jang, J., Kang, H., Pawlosky, A., Scott, A., Dahl, G. E., Berndl, M., Dimon, M., and Ferguson, B. S. (2021) Machine learning guided aptamer refinement and discovery, Nat. Commun., 12, 2366, https://doi.org/10.1038/s41467-021-22555-9.
  116. Matarrese, M. A. G., Loppini, A., Nicoletti, M., Filippi, S., and Chiodo, L. (2023) Assessment of tools for RNA secondary structure prediction and extraction: a final-user perspective, J. Biomol. Struct. Dyn., 41, 6917-6936, https://doi.org/10.1080/07391102.2022.2116110.
  117. Sato, K., Akiyama, M., and Sakakibara, Y. (2021) RNA secondary structure prediction using deep learning with thermodynamic integration, Nat. Commun., 12, 941, https://doi.org/10.1038/s41467-021-21194-4.
  118. Nasaev, S. S., Mukanov, A. R., Kuznetsov, I. I., and Veselovsky, A. V. (2023) AliNA – a deep learning program for RNA secondary structure prediction, Mol. Inform., 42, e202300113, https://doi.org/10.1002/minf.202300113.
  119. Khoshbin, Z., and Housaindokht, M. R. (2021) Computer-aided aptamer design for sulfadimethoxine antibiotic: step by step mutation based on MD simulation approach, J. Biomol. Struct. Dyn., 39, 3071-3079, https://doi.org/10.1080/07391102.2020.1760133.
  120. Hsieh, P. C., Lin, H. T., Chen, W. Y., Tsai, J. J. P., and Hu, W. P. (2017) The combination of computational and biosensing technologies for selecting aptamer against prostate specific antigen, Biomed. Res. Int., 2017, 5041683, https://doi.org/10.1155/2017/5041683.
  121. Shcherbinin, D. S., Gnedenko, O. V., Khmeleva, S. A., Usanov, S. A., Gilep, A. A., Yantsevich, A. V., Shkel, T. V., Yushkevich, I. V., Radko, S. P., Ivanov, A. S., Veselovsky, A. V., and Archakov, A. I. (2015) Computer-aided design of aptamers for cytochrome p450, J. Struct. Biol., 191, 112-119, https://doi.org/10.1016/j.jsb.2015.07.003.
  122. Oliveira, R., Pinho, E., Sousa, A. L., Dias, O., Azevedo, N. F., and Almeida, C. (2022) Modelling aptamers with nucleic acid mimics (NAM): from sequence to three-dimensional docking, PLoS One, 17, e0264701, https://doi.org/10.1371/journal.pone.0264701.
  123. Binet, T., Padiolleau-Lefevre, S., Octave, S., Avalle, B., and Maffucci, I. (2023) Comparative study of single-stranded oligonucleotides secondary structure prediction tools, BMC Bioinformatics, 24, 422, https://doi.org/10.1186/s12859-023-05532-5.
  124. Zhao, Y., Huang, Y., Gong, Z., Wang, Y., Man, J., and Xiao, Y. (2012) Automated and fast building of three-dimensional RNA structures, Sci. Rep., 2, 734, https://doi.org/10.1038/srep00734.
  125. Adler, A., Forster, N., Homann, M., and Goringer, H. U. (2008) Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer, Comb. Chem. High Throughput Screen., 11, 16-23, https://doi.org/10.2174/138620708783398331.
  126. Galindo-Murillo, R., Cohen, J. S., and Akabayov, B. (2021) Molecular dynamics simulations of acyclic analogs of nucleic acids for antisense inhibition, Mol. Ther. Nucleic Acids, 23, 527-535, https://doi.org/10.1016/j.omtn.2020.11.023.
  127. Sponer, J., Banas, P., Jurecka, P., Zgarbova, M., Kuhrova, P., Havrila, M., Krepl, M., Stadlbauer, P., and Otyepka, M. (2014) molecular dynamics simulations of nucleic acids. From tetranucleotides to the ribosome, J. Phys. Chem. Lett., 5, 1771-1782, https://doi.org/10.1021/jz500557y.
  128. Wulff, G., Sarhan, A., and Zabrocki, K. (1973) Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Lett., 14, 4329-4332, https://doi.org/10.1016/S0040-4039(01)87213-0.
  129. Haupt, K., Medina Rangel, P. X., and Bui, B. T. S. (2020) Molecularly imprinted polymers: antibody mimics for bioimaging and therapy, Chem. Rev., 120, 9554-9582, https://doi.org/10.1021/acs.chemrev.0c00428.
  130. Шумянцева В. В., Булко Т. В., Байчоров И. Х., Арчаков А. И. (2015) Полимерные антитела (МИП) в электроанализе белков, Биомедицинская химия, 61, 325-331, https://doi.org/10.18097/PBMC20156103325.
  131. Peeters, M., Eersels, K., Junkers, T., and Wagner, P. (2016) Molecularly Imprinted Polymers: Synthetic Receptors for Diagnostic Medical Devices, Elsevier, Amsterdam
  132. Bossi, A., Bonini, F., Turner, A. P., and Piletsky, S. A. (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art, Biosens. Bioelectron., 22, 1131-1137, https://doi.org/10.1016/j.bios.2006.06.023.
  133. Scorrano, S., Mergola, L., Del Sole, R., and Vasapollo, G. (2011) Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers, Int. J. Mol. Sci., 12, 1735-1743, https://doi.org/10.3390/ijms12031735.
  134. Piletsky, S. A., Turner, N. W., and Laitenberger, P. (2006) Molecularly imprinted polymers in clinical diagnostics – future potential and existing problems, Med. Eng. Phys., 28, 971-977, https://doi.org/10.1016/j.medengphy.2006.05.004.
  135. Puoci, F., Iemma, F., and Picci, N. (2008) Stimuli-responsive molecularly imprinted polymers for drug delivery: a review, Curr. Drug Deliv., 5, 85-96, https://doi.org/10.2174/156720108783954888.
  136. Emi Shaqiza, A., Mohd Noor, A., Islam, A. K. M. S., Dahyar, A., and Iqmal, T. (2011) Porogen effect towards the quality of curcumin imprinted polymer, Indones. J. Chem., 11, 207-211, https://doi.org/10.22146/ijc.21381.
  137. Ramstrom, O., and Mosbach, K. (1999) Synthesis and catalysis by molecularly imprinted materials, Curr. Opin. Chem. Biol., 3, 759-764, https://doi.org/10.1016/s1367-5931(99)00037-x.
  138. Parisi, O. I., Francomano, F., Dattilo, M., Patitucci, F., Prete, S., Amone, F., and Puoci, F. (2022) The evolution of molecular recognition: from antibodies to molecularly imprinted polymers (MIPs) as artificial counterpart, J. Funct. Biomater., 13, 12, https://doi.org/10.3390/jfb13010012.
  139. Vasapollo, G., Sole, R. D., Mergola, L., Lazzoi, M. R., Scardino, A., Scorrano, S., and Mele, G. (2011) Molecularly imprinted polymers: present and future prospective, Int. J. Mol. Sci., 12, 5908-5945, https://doi.org/10.3390/ijms12095908.
  140. Dirion, B., Cobb, Z., Schillinger, E., Andersson, L. I., and Sellergren, B. (2003) Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design, J. Am. Chem. Soc., 125, 15101-15109, https://doi.org/10.1021/ja0355473.
  141. Hoshino, Y., Kodama, T., Okahata, Y., and Shea, K. J. (2008) Peptide imprinted polymer nanoparticles: a plastic antibody, J. Am. Chem. Soc., 130, 15242-15243, https://doi.org/10.1021/ja8062875.
  142. Lee, M.-H., Thomas, J. L., Liao, C.-L., Jurcevic, S., Crnogorac-Jurcevic, T., and Lin, H.-Y. (2017) Polymers imprinted with three REG1B peptides for electrochemical determination of Regenerating Protein 1B, a urinary biomarker for pancreatic ductal adenocarcinoma, Microchim. Acta, 184, 1773-1780, https://doi.org/10.1007/s00604-017-2169-4.
  143. Urraca, J. L., Hall, A. J., Moreno-Bondi, M. C., and Sellergren, B. (2006) A stoichiometric molecularly imprinted polymer for the class-selective recognition of antibiotics in aqueous media, Angew. Chem. Int. Ed. Engl., 45, 5158-5161, https://doi.org/10.1002/anie.200601636.
  144. Xu, R., Tian, J., Guan, Y., and Zhang, Y. (2019) Peptide-cross-linked protein-imprinted polymers: easy template removal and excellent imprinting effect, CCS Chem., 1, 544-552, https://doi.org/10.31635/ccschem.019.20190030.
  145. Ansari, S., and Masoum, S. (2019) Molecularly imprinted polymers for capturing and sensing proteins: current progress and future implications, Trends Anal. Chem., 114, 29-47, https://doi.org/10.1016/j.trac.2019.02.008.
  146. Rajpal, S., Mishra, P., and Mizaikoff, B. (2023) Rational in silico design of molecularly imprinted polymers: current challenges and future potential, Int. J. Mol. Sci., 24, 6785, https://doi.org/10.3390/ijms24076785.
  147. Nicholls, I. A., Golker, K., Olsson, G. D., Suriyanarayanan, S., and Wiklander, J. G. (2021) The use of computational methods for the development of molecularly imprinted polymers, Polymers (Basel), 13, 2841, https://doi.org/10.3390/polym13172841.
  148. Liu, Z., Xu, Z., Wang, D., Yang, Y., Duan, Y., Ma, L., Lin, T., and Liu, H. (2021) A review on molecularly imprinted polymers preparation by computational simulation-aided methods, Polymers (Basel), 13, 2657, https://doi.org/10.3390/polym13162657.
  149. Olsson, G. D., Wiklander, J. G., and Nicholls, I. A. (2021) Using molecular dynamics in the study of molecularly imprinted polymers, Methods Mol. Biol., 2359, 241-268, https://doi.org/10.1007/978-1-0716-1629-1_21.
  150. Douykhumklaw, C., and Sutthibutpong, T. (2022) A molecular dynamics study on the diffusion and imprint ability of spectinomycin under different sizes of aniline oligomers, J. Mol. Model., 28, 387, https://doi.org/10.1007/s00894-022-05371-w.
  151. Suryana, S., Mutakin, M., Rosandi, Y., and Hasanah, A. N. (2022) Molecular dynamic study of mechanism underlying nature of molecular recognition and the role of crosslinker in the synthesis of salmeterol-targeting molecularly imprinted polymer for analysis of salmeterol xinafoate in biological fluid, Molecules, 27, 3619, https://doi.org/10.3390/molecules27113619.
  152. Rebelo, P., Pacheco, J. G., Voroshylova, I. V., Seguro, I., Cordeiro, M., and Delerue-Matos, C. (2022) Computational modelling and sustainable synthesis of a highly selective electrochemical MIP-based sensor for citalopram detection, Molecules, 27, 3315, https://doi.org/10.3390/molecules27103315.
  153. Daniels, E., Mustafa, Y. L., Herdes, C., and Leese, H. S. (2021) Optimization of cortisol-selective molecularly imprinted polymers enabled by molecular dynamics simulations, ACS Appl. Bio Mater., 4, 7243-7253, https://doi.org/10.1021/acsabm.1c00774.
  154. Garcia, Y., Usuga, B. A., Campos, C. H., Alderete, J. B., and Jimenez, V. A. (2021) NanoMIPs design for fucose and mannose recognition: a molecular dynamics approach, J. Chem. Inf. Model., 61, 2048-2061, https://doi.org/10.1021/acs.jcim.0c01446.
  155. Chianella, I., Lotierzo, M., Piletsky, S. A., Tothill, I. E., Chen, B., Karim, K., and Turner, A. P. (2002) Rational design of a polymer specific for microcystin-LR using a computational approach, Anal. Chem., 74, 1288-1293, https://doi.org/10.1021/ac010840b.
  156. Karlsson, B. C., O’Mahony, J., Karlsson, J. G., Bengtsson, H., Eriksson, L. A., and Nicholls, I. A. (2009) Structure and dynamics of monomer-template complexation: an explanation for molecularly imprinted polymer recognition site heterogeneity, J. Am. Chem. Soc., 131, 13297-13304, https://doi.org/10.1021/ja902087t.
  157. Nicholls, I. A., Andersson, H. S., Charlton, C., Henschel, H., Karlsson, B. C., Karlsson, J. G., O’Mahony, J., Rosengren, A. M., Rosengren, K. J., and Wikman, S. (2009) Theoretical and computational strategies for rational molecularly imprinted polymer design, Biosens. Bioelectron., 25, 543-552, https://doi.org/10.1016/j.bios.2009.03.038.
  158. Kryscio, D. R., Shi, Y., Ren, P., and Peppas, N. A. (2011) Molecular docking simulations for macromolecularly imprinted polymers, Ind. Eng. Chem. Res., 50, 13877-13884, https://doi.org/10.1021/ie201858n.
  159. Sullivan, M. V., Dennison, S. R., Archontis, G., Reddy, S. M., and Hayes, J. M. (2019) Toward rational design of selective molecularly imprinted polymers (MIPs) for proteins: computational and experimental studies of acrylamide based polymers for myoglobin, J. Phys. Chem. B, 123, 5432-5443, https://doi.org/10.1021/acs.jpcb.9b03091.
  160. Boroznjak, R., Reut, J., Tretjakov, A., Lomaka, A., Opik, A., and Syritski, V. (2017) A computational approach to study functional monomer-protein molecular interactions to optimize protein molecular imprinting, J. Mol. Recognit., 30, https://doi.org/10.1002/jmr.2635.
  161. Hsu, C. Y., Lin, H. Y., Thomas, J. L., Wu, B. T., and Chou, T. C. (2006) Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers, Biosens. Bioelectron., 22, 355-363, https://doi.org/10.1016/j.bios.2006.05.008.
  162. Mazouz, Z., Mokni, M., Fourati, N., Zerrouki, C., Barbault, F., Seydou, M., Kalfat, R., Yaakoubi, N., Omezzine, A., Bouslema, A., and Othmane, A. (2020) Computational approach and electrochemical measurements for protein detection with MIP-based sensor, Biosens. Bioelectron., 151, 111978, https://doi.org/10.1016/j.bios.2019.111978.
  163. Dhinesh Kumar, M., Karthikeyan, M., Kaniraja, G., Muthukumar, K., Muneeswaran, G., and Karunakaran, C. (2024) Computational modelling and optimization studies of electropentamer for molecular imprinting of DJ-1, J. Mol. Graph. Model., 128, 108715, https://doi.org/10.1016/j.jmgm.2024.108715.
  164. Cubuk, H., Ozbil, M., and Cakir Hatir, P. (2021) Computational analysis of functional monomers used in molecular imprinting for promising COVID-19 detection, Comput. Theor. Chem., 1199, 113215, https://doi.org/10.1016/j.comptc.2021.113215.
  165. Rajpal, S., and Mizaikoff, B. (2022) An in silico predictive method to select multi-monomer combinations for peptide imprinting, J. Mater. Chem. B, 10, 6618-6626, https://doi.org/10.1039/d2tb00418f.
  166. Lowdon, J. W., Ishikura, H., Kvernenes, M. K., Caldara, M., Cleij, T. J., van Grinsven, B., Eersels, K., and Diliën, H. (2021) Identifying potential machine learning algorithms for the simulation of binding affinities to molecularly imprinted polymers, Computation, 9, 103, https://doi.org/10.3390/computation9100103.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences