IGF-Signaling Pathway in the Heart Innormal and Pathological Conditions (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The proper functioning of the cardiovascular system is one of the most important goals of the body. The physiological processes in myocardium is regulated by the balance of cardioprotective and pathological mechanisms. The system of insulin-like growth factors (IGF system, IGF signaling pathway) plays pivotal role in regulating the growth and development of various cells and tissues. In the myocardium, the IGF system provides both cardioprotective and pathological effects. This review summarizes recent data on the role of IGF signaling in the realization of cardioprotection from one side and the pathogenesis of various cardiovascular diseases from the other side, as well as analyzes the severity of these effects in various conditions.

About the authors

D. A. Adasheva

Lomonosov Moscow State University

Email: dariaserebryanaya@gmail.com

Department of Biochemistry, Faculty of Biology

Russian Federation, 119234 Moscow

D. V. Serebryanaya

Lomonosov Moscow State University; Pirogov Russian National Research Medical University

Author for correspondence.
Email: dariaserebryanaya@gmail.com

Department of Biochemistry, Faculty of Biology

Russian Federation, 119234 Moscow; 117997 Moscow

References

  1. Bhatnagar, P., Wickramasinghe, K., Williams, J., Rayner, M., and Townsend, N. (2015) The epidemiology of cardiovascular disease in the UK 2014, Heart, 101, 1182-1189, https://doi.org/10.1136/heartjnl-2015-307516.
  2. Annunziata, M., Granata, R., and Ghigo, E. (2011) The IGF system, Acta Diabetol., 48, 1-9, https://doi.org/10.1007/s00592-010-0227-z.
  3. Kiepe, D., Ciarmatori, S., Haarmann, A., and Tönshoff, B. (2006) Differential expression of IGF system components in proliferating vs. differentiating growth plate chondrocytes: the functional role of IGFBP-5, Am. J. Physiol. Endocrinol. Metab., 290, E363-E371, https://doi.org/10.1152/ajpendo.00363.2005.
  4. Roith, D. L. (2003) The insulin-like growth factor system, Exp. Diabesity Res., 4, 205-212, https://doi.org/10.1155/EDR.2003.205.
  5. Federici, M., Porzio, O., Zucaro, L., Fusco, A., Borboni, P., Lauro, D., and Sesti, G. (1997) Distribution of insulin/insulin-like growth factor-I hybrid receptors in human tissues, Mol. Cell. Endocrinol., 129, 121-126, https://doi.org/10.1016/S0303-7207(97)04050-1.
  6. Li, B., Setoguchi, M., Wang, X., Andreoli, A. M., Leri, A., Malhotra, A., Kajstura, J., and Anversa, P. (1999) Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart, Circ. Res., 84, 1007-1019, https://doi.org/10.1161/01.RES.84.9.1007.
  7. Welch, S., Plank, D., Witt, S., Glascock, B., Schaefer, E., Chimenti, S., Andreoli, A. M., Limana, F., Leri, A., Kajstura, J., Anversa, P., and Sussman, M. A. (2002) Cardiac-specific IGF-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice, Circ. Res., 90, 641-648, https://doi.org/10.1161/01.RES.0000013780.77774.75.
  8. Colao, A. (2008) The GH-IGF‐I axis and the cardiovascular system: clinical implications, Clin. Endocrinol. (Oxf), 69, 347-358, https://doi.org/10.1111/j.1365-2265.2008.03292.x.
  9. Suleiman, M., Singh, R., and Stewart, C. (2007) Apoptosis and the cardiac action of insulin-like growth factor I, Pharmacol. Ther., 114, 278-294, https://doi.org/10.1016/j.pharmthera.2007.03.001.
  10. Arnqvist, H. (2008) The role of IGF-system in vascular insulin resistance, Horm. Metab. Res., 40, 588-592, https://doi.org/10.1055/s-0028-1082325.
  11. Smith, T. J. (2010) Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol. Rev., 62, 199-236, https://doi.org/10.1124/pr.109.002469.
  12. Higashi, Y., Sukhanov, S., Anwar, A., Shai, S.-Y., and Delafontaine, P. (2010) IGF-1, oxidative stress and atheroprotection, Trends Endocrinol. Metab., 21, 245-254, https://doi.org/10.1016/j.tem.2009.12.005.
  13. Saber, H., Himali, J. J., Beiser, A. S., Shoamanesh, A., Pikula, A., Roubenoff, R., Romero, J. R., Kase, C. S., Vasan, R. S., and Seshadri, S. (2017) Serum insulin-like growth factor 1 and the risk of ischemic stroke: the Framingham study, Stroke., 48, 1760-1765, https://doi.org/10.1161/STROKEAHA.116.016563.
  14. Carlzon, D., Svensson, J., Petzold, M., Karlsson, M. K., Ljunggren, Ö., Tivesten, Å., Mellström, D., and Ohlsson, C. (2014) Both low and high serum IGF-1 levels associate with increased risk of cardiovascular events in elderly men, J. Clin. Endocrinol. Metab., 99, E2308-E2316, https://doi.org/10.1210/jc.2014-1575.
  15. Konev, A. A., Serebryanaya, D. V., Koshkina, E. V., Rozov, F. N., Filatov, V. L., Kozlovsky, S.V., Kara, A. N., Katrukha, A. G., and Postnikov, A. B. (2018) Glycosylated and non-glycosylated NT-IGFBP-4 in circulation of acute coronary syndrome patients, Clin. Biochem., 55, 56-62, https://doi.org/10.1016/j.clinbiochem.2018.03.004.
  16. Postnikov, A. B., Smolyanova, T. I., Kharitonov, A. V., Serebryanaya, D. V., Kozlovsky, S. V., Tryshina, Y. A., Malanicev, R. V., Arutyunov, A. G., Murakami, M. M., Apple, F. S., and Katrukha, A. G. (2012) N-terminal and C-terminal fragments of IGFBP-4 as novel biomarkers for short-term risk assessment of major adverse cardiac events in patients presenting with ischemia, Clin. Biochem., 45, 519-524, https://doi.org/10.1016/j.clinbiochem.2011.12.030.
  17. Hjortebjerg, R., Tarnow, L., Jorsal, A., Parving, H.-H., Rossing, P., Bjerre, M., and Frystyk, J. (2015) IGFBP-4 fragments as markers of cardiovascular mortality in type 1 diabetes patients with and without nephropathy, J. Clin. Endocrinol. Metab., 100, 3032-3040, https://doi.org/10.1210/jc.2015-2196.
  18. Serebryanaya, D. V., Adasheva, D. A., Konev, A. A., Artemieva, M. M., Katrukha, I. A., Postnikov, A. B., Medvedeva, N. A., and Katrukha, A. G. (2021) IGFBP-4 proteolysis by PAPP-A in a primary culture of rat neonatal cardiomyocytes under normal and hypertrophic conditions, Biochemistry (Moscow), 86, 1395-1406, https://doi.org/10.1134/S0006297921110043.
  19. Wang, W., Sun, Y., Mo, D.-G., Li, T., and Yao, H.-C. (2023) Circulating IGF-1 and IGFBP-2 may be biomarkers for risk stratification in patients with acute coronary syndrome: a prospective cohort study, Nutr. Metab. Cardiovasc. Dis., 33, 1740-1747, https://doi.org/10.1016/j.numecd.2023.05.030.
  20. Yu, W., Gao, H., Hu, T., Tan, X., Liu, Y., Liu, H., He, S., Chen, Z., Guo, S., and Huang, J. (2023) Insulin-like growth factor binding protein 2: a core biomarker of left ventricular dysfunction in dilated cardiomyopathy, Hereditas, 160, 36, https://doi.org/10.1186/s41065-023-00298-5.
  21. Brissenden, J. E., Ullrich, A., and Francke, U. (1984) Human chromosomal mapping of genes for insulin-like growth factors I and II and epidermal growth factor, Nature, 310, 781-784, https://doi.org/10.1038/310781a0.
  22. Tricoli, J. V., Rall, L. B., Scott, J., Bell, G. I., and Shows, T. B. (1984) Localization of insulin-like growth factor genes to human chromosomes 11 and 12, Nature., 310, 784-786, https://doi.org/10.1038/310784a0.
  23. Rotwein, P., Pollock, K. M., Didier, D. K., and Krivi, G. G. (1986) Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides, J. Biol. Chem., 261, 4828-4832.
  24. Smith, P. J., Spurrell, E. L., Coakley, J., Hinds, C. J., Ross, R. J. M., Krainer, A. R., and Chew, S. L. (2002) An exonic splicing enhancer in human IGF-I Pre-mRNA mediates recognition of alternative exon 5 by the serine-arginine protein splicing factor-2/Alternative splicing factor, Endocrinology, 143, 146-154, https://doi.org/10.1210/endo.143.1.8598.
  25. Yakar, S., Liu, J.-L., Stannard, B., Butler, A., Accili, D., Sauer, B., and LeRoith, D. (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I, Proc. Natl. Acad. Sci. USA, 96, 7324-7329, https://doi.org/10.1073/pnas.96.13.7324.
  26. Vassilakos, G., Lei, H., Yang, Y., Puglise, J., Matheny, M., Durzynska, J., Ozery, M., Bennett, K., Spradlin, R., Bonanno, H., Park, S., Ahima, R. S., and Barton, E. R. (2019) Deletion of muscle IGF‐I transiently impairs growth and progressively disrupts glucose homeostasis in male mice, FASEB J., 33, 181-194, https://doi.org/10.1096/fj.201800459R.
  27. Fernandez, A. M., De La Vega, A. G., and Torres-Aleman, I. (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia, Proc. Natl. Acad. Sci. USA, 95, 1253-1258, https://doi.org/10.1073/pnas.95.3.1253.
  28. Soto, M., Cai, W., Konishi, M., and Kahn, C. R. (2019) Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior, Proc. Natl. Acad. Sci. USA, 116, 6379-6384, https://doi.org/10.1073/pnas.1817391116.
  29. LeRoith, D., Holly, J. M. P., and Forbes, B. E. (2021) Insulin-like growth factors: Ligands, binding proteins, and receptors, Mol. Metab., 52, 101245, https://doi.org/10.1016/j.molmet.2021.101245.
  30. Troncoso, R., Ibarra, C., Vicencio, J. M., Jaimovich, E., and Lavandero, S. (2014) New insights into IGF-1 signaling in the heart, Trends Endocrinol. Metab., 25, 128-137, https://doi.org/10.1016/j.tem.2013.12.002.
  31. Zhao, P., Turdi, S., Dong, F., Xiao, X., Su, G., Zhu, X., Scott, G. I., and Ren, J. (2009) Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes, Shock, 32, 100-107, https://doi.org/10.1097/SHK.0b013e31818ec609.
  32. Tsai, T.-C., Shih, C.-C., Chien, H.-P., Yang, A.-H., Lu, J.-K., and Lu, J.-H. (2018) Anti-apoptotic effects of IGF-I on mortality and dysmorphogenesis in tbx5-deficient zebrafish embryos, BMC Dev. Biol., 18, 5, https://doi.org/10.1186/s12861-017-0161-1.
  33. Chao, W., and D’Amore, P. A. (2008) IGF2: Epigenetic regulation and role in development and disease, Cytokine Growth Factor Rev., 19, 111-120, https://doi.org/10.1016/j.cytogfr.2008.01.005.
  34. Baral, K., and Rotwein, P. (2019) The insulin-like growth factor 2 gene in mammals: Organizational complexity within a conserved locus, PLoS One, 14, e0219155, https://doi.org/10.1371/journal.pone.0219155.
  35. Clemmons, D. (2006) Involvement of insulin-like growth factor-I in the control of glucose homeostasis, Curr. Opin. Pharmacol., 6, 620-625, https://doi.org/10.1016/j.coph.2006.08.006.
  36. Uchimura, T., Hollander, J. M., Nakamura, D. S., Liu, Z., Rosen, C. J., Georgakoudi, I., and Zeng, L. (2017) An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth, Development, 144, 3533-3546, https://doi.org/10.1242/dev.155598.
  37. Alberini, C. M., and Chen, D. Y. (2012) Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2, Trends Neurosci., 35, 274-283, https://doi.org/10.1016/j.tins.2011.12.007.
  38. DeChiara, T. M., Robertson, E. J., and Efstratiadis, A. (1991) Parental imprinting of the mouse insulin-like growth factor II gene, Cell, 64, 849-859, https://doi.org/10.1016/0092-8674(91)90513-X.
  39. Zhang, Q., Qin, S., Huai, J., Yang, H., and Wei, Y. (2023) Overexpression of IGF2 affects mouse weight and glycolipid metabolism and IGF2 is positively related to macrosomia, Front. Endocrinol., 14, 1030453, https://doi.org/10.3389/fendo.2023.1030453.
  40. Petrik, J., Pell, J. M., Arany, E., McDonald, T. J., Dean, W. L., Reik, W., and Hill, D. J. (1999) Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia, Endocrinology, 140, 2353-2363, https://doi.org/10.1210/endo.140.5.6732.
  41. Zaina, S., Pettersson, L., Thomsen, A. B., Chai, C.-M., Qi, Z., Thyberg, J., and Nilsson, J. (2003) Shortened life span, bradycardia, and hypotension in mice with targeted expression of an Igf2 transgene in smooth muscle cells, Endocrinology, 144, 2695-2703, https://doi.org/10.1210/en.2002-220944.
  42. Engelmann, G. L., Boehm, K. D., Haskell, J. F., Khairallah, P. A., and Ilan, J. (1989) Insulin-like growth factors and neonatal cardiomyocyte development: ventricular gene expression and membrane receptor variations in normotensive and hypertensive rats, Mol. Cell. Endocrinol., 63, 1-14, https://doi.org/10.1016/0303-7207(89)90076-2.
  43. Li, P., Cavallero, S., Gu, Y., Chen, T. H. P., Hughes, J., Hassan, A. B., Brüning, J. C., Pashmforoush, M., and Sucov, H. M. (2011) IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development, Development, 138, 1795-1805, https://doi.org/10.1242/dev.054338.
  44. Meganathan, K., Sotiriadou, I., Natarajan, K., Hescheler, J., and Sachinidis, A. (2015) Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development, Int. J. Cardiol., 183, 117-128, https://doi.org/10.1016/j.ijcard.2015.01.049.
  45. Evans-Anderson, H. J., Alfieri, C. M., and Yutzey, K. E. (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors, Circ. Res., 102, 686-694, https://doi.org/10.1161/CIRCRESAHA.107.163428.
  46. Lee, W.-L., Chen, J.-W., Ting, C.-T., Ishiwata, T., Lin, S.-J., Korc, M., and Wang, P. H. (1999) Insulin-like growth factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dilated cardiomyopathy, Endocrinology, 140, 4831-4840, https://doi.org/10.1210/endo.140.10.7082.
  47. Brade, T., Kumar, S., Cunningham, T. J., Chatzi, C., Zhao, X., Cavallero, S., Li, P., Sucov, H. M., Ruiz-Lozano, P., and Duester, G. (2011) Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2, Development, 138, 139-148, https://doi.org/10.1242/dev.054239.
  48. Shen, H., Cavallero, S., Estrada, K. D., Sandovici, I., Kumar, S. R., Makita, T., Lien, C.-L., Constancia, M., and Sucov, H. M. (2015) Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion, Cardiovasc. Res., 105, 271-278, https://doi.org/10.1093/cvr/cvu269.
  49. Barak, Y., Hemberger, M., and Sucov, H. M. (2019) Phases and mechanisms of embryonic cardiomyocyte proliferation and ventricular wall morphogenesis, Pediatr. Cardiol., 40, 1359-1366, https://doi.org/10.1007/s00246019-02164-6.
  50. Díaz Del Moral, S., Benaouicha, M., Muñoz-Chápuli, R., and Carmona, R. (2021) The insulin-like growth factor signalling pathway in cardiac development and regeneration, Int. J. Mol. Sci., 23, 234, https://doi.org/10.3390/ijms23010234.
  51. Wang, K. C. W., Zhang, L., McMillen, I. C., Botting, K. J., Duffield, J. A., Zhang, S., Suter, C. M., Brooks, D. A., and Morrison, J. L. (2011) Fetal growth restriction and the programming of heart growth and cardiac insulin‐like growth factor 2 expression in the lamb, J. Physiol., 589, 4709-4722, https://doi.org/10.1113/jphysiol.2011.211185.
  52. Wang, K. C. W., Brooks, D. A., Thornburg, K. L., and Morrison, J. L. (2012) Activation of IGF‐2R stimulates cardiomyocyte hypertrophy in the late gestation sheep fetus, J. Physiol., 590, 5425-5437, https://doi.org/10.1113/jphysiol.2012.238410.
  53. McMullen, J. R., Shioi, T., Huang, W.-Y., Zhang, L., Tarnavski, O., Bisping, E., Schinke, M., Kong, S., Sherwood, M. C., Brown, J., Riggi, L., Kang, P. M., and Izumo, S. (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway, J. Biol. Chem., 279, 4782-4793, https://doi.org/10.1074/jbc.M310405200.
  54. Holzenberger, M., Hamard, G., Zaoui, R., Leneuve, P., Ducos, B., Beccavin, C., Périn, L., and Le Bouc, Y. (2001) Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular, Endocrinology, 142, 4469-4478, https://doi.org/10.1210/endo.142.10.8461.
  55. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P. C., Cervera, P., and Le Bouc, Y. (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice, Nature, 421, 182-187, https://doi.org/10.1038/nature01298.
  56. Lau, M. M., Stewart, C. E., Liu, Z., Bhatt, H., Rotwein, P., and Stewart, C. L. (1994) Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality, Genes Dev., 8, 2953-2963, https://doi.org/10.1101/gad.8.24.2953.
  57. Ludwig, T., Eggenschwiler, J., Fisher, P., D’Ercole, A. J., Davenport, M. L., and Efstratiadis, A. (1996) Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds, Dev. Biol., 177, 517-535, https://doi.org/10.1006/dbio.1996.0182.
  58. Hoeflich, A., David, R., and Hjortebjerg, R. (2018) Current IGFBP-related biomarker research in cardiovascular disease – we need more structural and functional information in clinical studies, Front. Endocrinol., 9, 388, https://doi.org/10.3389/fendo.2018.00388.
  59. Allard, J. B., and Duan, C. (2018) IGF-binding proteins: why do they exist and why are there so many? Front. Endocrinol., 9, 117, https://doi.org/10.3389/fendo.2018.00117.
  60. Binoux, M., and Hossenlopp, P. (1988) Insulin-like growth factor (IGF) and IGF-binding proteins: comparison of human serum and lymph, J. Clin. Endocrinol. Metab., 67, 509-514, https://doi.org/10.1210/jcem-67-3-509.
  61. Bae, J.-H., Song, D.-K., and Im, S.-S. (2013) Regulation of IGFBP-1 in metabolic diseases, J. Lifestyle Med., 3, 73-79.
  62. Sala, A., Capaldi, S., Campagnoli, M., Faggion, B., Labò, S., Perduca, M., Romano, A., Carrizo, M. E., Valli, M., Visai, L., Minchiotti, L., Galliano, M., and Monaco, H. L. (2005) Structure and properties of the C-terminal domain of insulin-like growth factor-binding protein-1 isolated from human amniotic fluid, J. Biol. Chem., 280, 29812-29819, https://doi.org/10.1074/jbc.M504304200.
  63. Haywood, N. J., Cordell, P. A., Tang, K. Y., Makova, N., Yuldasheva, N. Y., Imrie, H., Viswambharan, H., Bruns, A. F., Cubbon, R. M., Kearney, M. T., and Wheatcroft, S. B. (2017) Insulin-like growth factor binding protein 1 could improve glucose regulation and insulin sensitivity through its RGD domain, Diabetes, 66, 287-299, https://doi.org/10.2337/db16-0997.
  64. Ammoun, S., Schmid, M. C., Zhou, L., Ristic, N., Ercolano, E., Hilton, D. A., Perks, C. M., and Hanemann, C. O. (2012) Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates human schwannoma proliferation, adhesion and survival, Oncogene, 31, 1710-1722, https://doi.org/10.1038/onc.2011.357.
  65. Tang, X., Jiang, H., Lin, P., Zhang, Z., Chen, M., Zhang, Y., Mo, J., Zhu, Y., Liu, N., and Chen, X. (2021) Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes, Cell Death Discov., 7, 242, https://doi.org/10.1038/s41420-021-00629-3.
  66. Peng, X., Ueda, H., Zhou, H., Stokol, T., Shen, T., Alcaraz, A., Nagy, T., Vassalli, J., and Guan, J. (2004) Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice, Cardiovasc. Res., 64, 421-430, https://doi.org/10.1016/j.cardiores.2004.07.012.
  67. Lee, P. D. K., Conover, C. A., and Powell, D. R. (1993) Regulation and function of insulin-like growth factor-binding protein-1, Exp. Biol. Med., 204, 4-29, https://doi.org/10.3181/00379727-204-43630.
  68. Bar, R. S., Boes, M., Clemmons, D. R., Busby, W. H., Sandra, A., Dake, B. L., and Booth, B. A. (1990) Insulin differentially alters transcapillary movement of intravascular IGFBP-1, IGFBP-2 and endothelial cell IGF-binding proteins in the rat heart, Endocrinology, 127, 497-499, https://doi.org/10.1210/endo-127-1-497.
  69. Wolk, K., Larsson, S. C., Vessby, B., Wolk, A., and Brismar, K. (2004) Metabolic, anthropometric, and nutritional factors as predictors of circulating insulin-like growth factor binding protein-1 levels in middle-aged and elderly men, J. Clin. Endocrinol. Metab., 89, 1879-1884, https://doi.org/10.1210/jc.2003-031349.
  70. Heald, A. H., Cruickshank, J. K., Riste, L. K., Cade, J. E., Anderson, S., Greenhalgh, A., Sampayo, J., Taylor, W., Fraser, W., White, A., and Gibson, J. M. (2001) Close relation of fasting insulin-like growth factor binding protein-1 (IGFBP-1) with glucose tolerance and cardiovascular risk in two populations, Diabetologia, 44, 333-339, https://doi.org/10.1007/s001250051623.
  71. Laughlin, G. A., Barrett-Connor, E., Criqui, M. H., and Kritz-Silverstein, D. (2004) The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the rancho Bernardo study, J. Clin. Endocrinol. Metab., 89, 114-120, https://doi.org/10.1210/jc.2003-030967.
  72. Aziz, A., Haywood, N. J., Cordell, P. A., Smith, J., Yuldasheva, N. Y., Sengupta, A., Ali, N., Mercer, B. N., Mughal, R. S., Riches, K., Cubbon, R. M., Porter, K. E., Kearney, M. T., and Wheatcroft, S. B. (2018) Insulin like growth factor-binding protein-1 improves vascular endothelial repair in male mice in the setting of insulin resistance, Endocrinology, 159, 696-709, https://doi.org/10.1210/en.2017-00572.
  73. Wheatcroft, S. B., Kearney, M. T., Shah, A. M., Grieve, D. J., Williams, I. L., Miell, J. P., and Crossey, P. A. (2003) Vascular endothelial function and blood pressure homeostasis in mice overexpressing IGF binding protein-1, Diabetes, 52, 2075-2082, https://doi.org/10.2337/diabetes.52.8.2075.
  74. Rajwani, A., Ezzat, V., Smith, J., Yuldasheva, N. Y., Duncan, E. R., Gage, M., Cubbon, R. M., Kahn, M. B., Imrie, H., Abbas, A., Viswambharan, H., Aziz, A., Sukumar, P., Vidal-Puig, A., Sethi, J. K., Xuan, S., Shah, A. M., Grant, P. J., Porter, K. E., Kearney, M. T., and Wheatcroft, S. B. (2012) Increasing circulating IGFBP1 levels improves insulin sensitivity, promotes nitric oxide production, lowers blood pressure, and protects against atherosclerosis, Diabetes, 61, 915-924, https://doi.org/10.2337/db11-0963.
  75. Haywood, N. J., Slater, T. A., Drozd, M., Warmke, N., Matthews, C., Cordell, P. A., Smith, J., Rainford, J., Cheema, H., Maher, C., Bridge, K. I., Yuldasheva, N. Y., Cubbon, R. M., Kearney, M. T., and Wheatcroft, S. B. (2020) IGFBP-1 in cardiometabolic pathophysiology – insights from loss-of-function and gain-of-function studies in male mice, J. Endocr. Soc., 4, bvz006, https://doi.org/10.1210/jendso/bvz006.
  76. Murphy, L. J. (2000) Overexpression of insulin-like growth factor binding protein-1 in transgenic mice, Pediatr. Nephrol., 14, 567-571, https://doi.org/10.1007/s004670000347.
  77. Doublier, S., Amri, K., Seurin, D., Moreau, E., Merlet-Benichou, C., Striker, G. E., and Gilbert, T. (2001) Overexpression of human insulin-like growth factor binding protein-1 in the mouse leads to nephron deficit, Pediatr. Res., 49, 660-666, https://doi.org/10.1203/00006450-200105000-00009.
  78. Russo, V. C., Schütt, B. S., Andaloro, E., Ymer, S. I., Hoeflich, A., Ranke, M. B., Bach, L. A., and Werther, G. A. (2005) Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion, Endocrinology, 146, 4445-4455, https://doi.org/10.1210/en.2005-0467.
  79. Slater, T., Haywood, N. J., Matthews, C., Cheema, H., and Wheatcroft, S. B. (2019) Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease, Cytokine Growth Factor Rev., 46, 28-35, https://doi.org/10.1016/j.cytogfr.2019.03.005.
  80. Khan, S. (2019) IGFBP-2 signaling in the brain: from brain development to higher order brain functions, Front. Endocrinol., 10, 822, https://doi.org/10.3389/fendo.2019.00822.
  81. Yau, S. W., Azar, W. J., Sabin, M. A., Werther, G. A., and Russo, V. C. (2015) IGFBP-2 – taking the lead in growth, metabolism and cancer, J. Cell Commun. Signal., 9, 125-142, https://doi.org/10.1007/s12079-015-0261-2.
  82. Hoeflich, A., Wu, M., Mohan, S., Föll, J., Wanke, R., Froehlich, T., Arnold, G. J., Lahm, H., Kolb, H. J., and Wolf, E. (1999) Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain, Endocrinology, 140, 5488-5496, https://doi.org/10.1210/endo.140.12.7169.
  83. Wood, T. L., Rogler, L. E., Czick, M. E., Schuller, A. G. P., and Pintar, J. E. (2000) Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene, Mol. Endocrinol., 14, 1472-1482, https://doi.org/10.1210/mend.14.9.0517.
  84. Ko, J.M., Park, H. K., Yang, S., and Hwang, I. T. (2012) Influence of catch-up growth on IGFBP-2 levels and association between IGFBP-2 and cardiovascular risk factors in Korean children born SGA, Endocr. J., 59, 725-733, https://doi.org/10.1507/endocrj.EJ12-0080.
  85. Berry, M., Galinier, M., Delmas, C., Fournier, P., Desmoulin, F., Turkieh, A., Mischak, H., Mullen, W., Barutaut, M., Eurlings, L. W., Van Wijk, S., Brunner-La Rocca, H.-P., Caubere, C., Butler, J., Roncalli, J., Evaristi, M. F., Cohen-Solal, A., Seronde, M.-F., Escamilla, R., Ferrières, J., Koukoui, F., Smih, F., and Rouet, P. (2015) Proteomics analysis reveals IGFBP2 as a candidate diagnostic biomarker for heart failure, IJC Metab. Endocr., 6, 5-12, https://doi.org/10.1016/j.ijcme.2014.11.003.
  86. Barutaut, M., Fournier, P., Peacock, W. F., Evaristi, M. F., Caubère, C., Turkieh, A., Desmoulin, F., Eurlings, L. W. M., Van Wijk, S., Brunner-La Rocca, H.-P., Butler, J., Koukoui, F., Dambrin, C., Mazeres, S., Le Page, S., Delmas, C., Galinier, M., Jung, C., Smih, F., and Rouet, P. (2020) Insulin-like Growth Factor Binding Protein 2 predicts mortality risk in heart failure, Int. J. Cardiol., 300, 245-251, https://doi.org/10.1016/j.ijcard.2019.09.032.
  87. De Kort, S. W. K., Van Doorn, J., Van De Sande, A. G. M., Leunissen, R. W. J., and Hokken-Koelega, A. C. S. (2010) Serum insulin-like growth factor-binding protein-2 levels and metabolic and cardiovascular risk factors in young adults and children born small for gestational age, J. Clin. Endocrinol. Metab., 95, 864-871, https://doi.org/10.1210/jc.2009-1508.
  88. Yang, J., Griffiths, M., Nies, M. K., Brandal, S., Damico, R., Vaidya, D., Tao, X., Simpson, C. E., Kolb, T. M., Mathai, S. C., Pauciulo, M. W., Nichols, W. C., Ivy, D. D., Austin, E. D., Hassoun, P. M., and Everett, A. D. (2020) Insulin-like growth factor binding protein-2: a new circulating indicator of pulmonary arterial hypertension severity and survival, BMC Med., 18, 268, https://doi.org/10.1186/s12916-020-01734-3.
  89. Firth, S. M., and Baxter, R. C. (2002) Cellular actions of the insulin-like growth factor binding proteins, Endocr. Rev., 23, 824-854, https://doi.org/10.1210/er.2001-0033.
  90. Varma Shrivastav, S., Bhardwaj, A., Pathak, K. A., and Shrivastav, A. (2020) Insulin-like growth factor binding protein-3 (IGFBP-3): unraveling the role in mediating IGF-independent effects within the cell, Front. Cell Dev. Biol., 8, 286, https://doi.org/10.3389/fcell.2020.00286.
  91. Nguyen, K. H., Yao, X.-H., Erickson, A. G., Mishra, S., and Nyomba, B. L. G. (2015) Glucose intolerance in aging male IGFBP-3 transgenic mice: differential effects of human IGFBP-3 and its mutant IGFBP-3 devoid of IGF binding ability, Endocrinology, 156, 462-474, https://doi.org/10.1210/en.2014-1271.
  92. Scully, T., Firth, S. M., Scott, C. D., De Silva, H. C., Pintar, J. E., Chan-Ling, T., Twigg, S. M., and Baxter, R. C. (2016) Insulin-like growth factor binding protein-3 links obesity and breast cancer progression, Oncotarget, 7, 55491-55505, https://doi.org/10.18632/oncotarget.10675.
  93. Granata, R., Broglio, F., Migliorino, D., Cutrupi, S., Baldanzi, G., Sireno, M., Fubini, A., Graziani, A., Ghigo, E., and Pucci, A. (2000) Neonatal and adult human heart tissues from normal subjects and patients with ischemic, dilated or hypertrophic cardiomyopathy express insulin-like growth factor binding protein-3 (IGFBP-3), J. Endocrinol. Invest., 23, 724-726, https://doi.org/10.1007/BF03345060.
  94. Pucci, A., Zanini, C., Granata, R., Ghignone, R., Iavarone, A., Broglio, F., Sorrentino, P., Bergamasco, L., Rinaldi, M., and Ghigo, E. (2009) Myocardial insulin-like growth factor-1 and insulin-like growth factor binding protein-3 gene expression in failing hearts harvested from patients undergoing cardiac transplantation, J. Heart Lung Transplant., 28, 402-405, https://doi.org/10.1016/j.healun.2008.12.022.
  95. Chang, R.-L., Lin, J.-W., Hsieh, D. J.-Y., Yeh, Y.-L., Shen, C.-Y., Day, C.-H., Ho, T.-J., Viswanadha, V. P., Kuo, W.-W., and Huang, C.-Y. (2015) Long-term hypoxia exposure enhanced IGFBP-3 protein synthesis and secretion resulting in cell apoptosis in H9c2 myocardial cells, Growth Factors, 33, 275-281, https://doi.org/10.3109/08977194.2015.1077824.
  96. Oikonomopoulos, A., Sereti, K.-I., Conyers, F., Bauer, M., Liao, A., Guan, J., Crapps, D., Han, J.-K., Dong, H., Bayomy, A. F., Fine, G. C., Westerman, K., Biechele, T. L., Moon, R. T., Force, T., and Liao, R. (2011) Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3, Circ. Res., 109, 1363-1374, https://doi.org/10.1161/CIRCRESAHA.111.250282.
  97. Oh, S., Kim, W., Lee, O., Kang, J., Woo, J., Kim, J., Glisson, B., and Lee, H. (2012) Insulin‐like growth factor binding protein‐3 suppresses vascular endothelial growth factor expression and tumor angiogenesis in head and neck squamous cell carcinoma, Cancer Sci., 103, 1259-1266, https://doi.org/10.1111/j.1349-7006.2012.02301.x.
  98. Lee, H.-J., Lee, J.-S., Hwang, S.J., and Lee, H.-Y. (2015) Insulin-like growth factor binding protein-3 inhibits cell adhesion via suppression of integrin β4 expression, Oncotarget, 6, 15150-15163, https://doi.org/10.18632/oncotarget.3825.
  99. Granata, R., Trovato, L., Lupia, E., Sala, G., Settanni, F., Camussi, G., Ghidoni, R., and Ghigo, E. (2007) Insulin‐like growth factor binding protein‐3 induces angiogenesis through IGF‐I‐ and SphK1‐dependent mechanisms, J. Thromb. Haemost., 5, 835-845, https://doi.org/10.1111/j.1538-7836.2007.02431.x.
  100. Hjortebjerg, R. (2018) IGFBP-4 and PAPP-A in normal physiology and disease, Growth Horm. IGF Res., 41, 7-22, https://doi.org/10.1016/j.ghir.2018.05.002.
  101. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., Foster, B., Moser, M., Karasik, E., Gillard, B., Ramsey, K., Sullivan, S., Bridge, J., Magazine, H., Syron, J., Fleming, J., Siminoff, L., Traino, H., Mosavel, M., Barker, L., Jewell, S., Rohrer, D., Maxim, D., Filkins, D., Harbach, P., Cortadillo, E., Berghuis, B., Turner, L., Hudson, E., Feenstra, K., Sobin, L., Robb, J., Branton, P., Korzeniewski, G., Shive, C., Tabor, D., Qi, L., Groch, K., Nampally, S., Buia, S., Zimmerman, A., Smith, A., Burges, R., Robinson, K., Valentino, K., Bradbury, D., Cosentino, M., Diaz-Mayoral, N., Kennedy, M., Engel, T., Williams, P., Erickson, K., Ardlie, K., Winckler, W., Getz, G., DeLuca, D., MacArthur, D., Kellis, M., Thomson, A., Young, T., Gelfand, E., Donovan, M., Meng, Y., Grant, G., Mash, D., Marcus, Y., Basile, M., Liu, J., Zhu, J., Tu, Z., Cox, N. J., Nicolae, D. L., Gamazon, E. R., Im, H. K., Konkashbaev, A., Pritchard, J., Stevens, M., Flutre, T., Wen, X., Dermitzakis, E. T., Lappalainen, T., Guigo, R., Monlong, J., Sammeth, M., Koller, D., Battle, A., Mostafavi, S., McCarthy, M., Rivas, M., Maller, J., Rusyn, I., Nobel, A., Wright, F., Shabalin, A., Feolo, M., Sharopova, N., Sturcke, A., Paschal, J., Anderson, J. M., Wilder, E. L., Derr, L. K., Green, E. D., Struewing, J. P., Temple, G., Volpi, S., Boyer, J. T., Thomson, E. J., Guyer, M. S., Ng, C., Abdallah, A., Colantuoni, D., Insel, T. R., Koester, S. E., Little, A. R., Bender, P. K., Lehner, T., Yao, Y., Compton, C. C., Vaught, J. B., Sawyer, S., Lockhart, N. C., Demchok, J., and Moore, H. F. (2013) The genotype-tissue expression (GTEx) project, Nat. Genet., 45, 580-585, https://doi.org/10.1038/ng.2653.
  102. Monget, P., and Oxvig, C. (2016) PAPP-A and the IGF system, Ann. Endocrinol., 77, 90-96, https://doi.org/10.1016/j.ando.2016.04.015.
  103. Zhu, W., Shiojima, I., Ito, Y., Li, Z., Ikeda, H., Yoshida, M., Naito, A. T., Nishi, J., Ueno, H., Umezawa, A., Minamino, T., Nagai, T., Kikuchi, A., Asashima, M., and Komuro, I. (2008) IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis, Nature, 454, 345-349, https://doi.org/10.1038/nature07027.
  104. Konev, A. A., Smolyanova, T. I., Kharitonov, A. V., Serebryanaya, D. V., Kozlovsky, S. V., Kara, A. N., Feygina, E. E., Katrukha, A. G., and Postnikov, A. B. (2015) Characterization of endogenously circulating IGFBP-4 fragments – novel biomarkers for cardiac risk assessment, Clin. Biochem., 48, 774-780, https://doi.org/10.1016/j.clinbiochem.2015.05.010.
  105. Konev, A. A., Kharitonov, A. V., Rozov, F. N., Altshuler, E. P., Serebryanaya, D. V., Lassus, J., Harjola, V., Katrukha, A. G., and Postnikov, A. B. (2020) CT‐IGFBP‐4 as a novel prognostic biomarker in acute heart failure, ESC Heart Fail., 7, 434-444, https://doi.org/10.1002/ehf2.12590.
  106. Wang, J., Niu, W., Witte, D. P., Chernausek, S. D., Nikiforov, Y. E., Clemens, T. L., Sharifi, B., Strauch, A. R., and Fagin, J. A. (1998) Overexpression of insulin-like growth factor-binding protein-4 (IGFBP-4) in smooth muscle cells of transgenic mice through a smooth muscle α-actin-IGFBP-4 fusion gene induces smooth muscle hypoplasia, Endocrinology, 139, 2605-2614, https://doi.org/10.1210/endo.139.5.5986.
  107. Zhang, M., Faugere, M.-C., Malluche, H., Rosen, C.J., Chernausek, S. D., and Clemens, T. L. (2003) Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation, J. Bone Miner. Res., 18, 836-843, https://doi.org/10.1359/jbmr.2003.18.5.836.
  108. Damon, S. E., Maddison, L., Ware, J. L., and Plymate, S. R. (1998) Overexpression of an inhibitory insulin-like growth factor binding protein (IGFBP), IGFBP-4, delays onset of prostate tumor formation, Endocrinology, 139, 3456-3464, https://doi.org/10.1210/endo.139.8.6150.
  109. Huynh, H., Beamer, W., and Pollak, M. (1997) Overexpression of insulin-like growth factor binding protein 4 (IGFBP-4) in MCF-7 breast cancer cells is associated with reduced responsiveness to insulin-like growth factors in vitro and reduced tumour growth in vivo, Int. J. Oncol., 11, 193-197, https://doi.org/10.3892/ijo.11.1.193.
  110. Ning, Y., Schuller, A. G. P., Bradshaw, S., Rotwein, P., Ludwig, T., Frystyk, J., and Pintar, J. E. (2006) Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3, -4, and -5, Mol. Endocrinol., 20, 2173-2186, https://doi.org/10.1210/me.2005-0196.
  111. Austin, K., Imam, N. A., Pintar, J. E., and Brubaker, P. L. (2015) IGF binding protein-4 is required for the growth effects of glucagon-like peptide-2 in murine intestine, Endocrinology, 156, 429-436, https://doi.org/10.1210/en.2014-1829.
  112. Duan, C., and Allard, J. B. (2020) Insulin-like growth factor binding protein-5 in physiology and disease, Front. Endocrinol., 11, 100, https://doi.org/10.3389/fendo.2020.00100.
  113. Andress, D. L., and Birnbaum, R. S. (1991) A novel human insulin-like growth factor binding protein secreted by osteoblast-like cells, Biochem. Biophys. Res. Commun., 176, 213-218, https://doi.org/10.1016/0006291X(91)90911-P.
  114. Bautista, C. M., Baylink, D. J., and Mohan, S. (1991) Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: a potential candidate for fixing IGF-II in human bone, Biochem. Biophys. Res. Commun., 176, 756-763, https://doi.org/10.1016/S0006-291X(05)80249-9.
  115. Liu, L., Wang, J., Li, X., Ma, J., Shi, C., Zhu, H., Xi, Q., Zhang, J., Zhao, X., and Gu, M. (2015) miR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma, Biochem. Biophys. Res. Commun., 457, 621-626, https://doi.org/10.1016/j.bbrc.2015.01.037.
  116. Zhang, W. R., Zhang, H. N., Wang, Y. M., Dai, Y., Liu, X. F., Li, X., Ding, X. B., and Guo, H. (2017) miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5, In Vitro Cell. Dev. Biol. Anim., 53, 265-271, https://doi.org/10.1007/s11626-016-0109-y.
  117. Camacho-Hubner, C., Busby, W. H., McCusker, R. H., Wright, G., and Clemmons, D. R. (1992) Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion, J. Biol. Chem., 267, 11949-11956.
  118. Jones, J. I., Gockerman, A., Busby, W. H., Camacho-Hubner, C., and Clemmons, D. R. (1993) Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I, J. Cell Biol., 121, 679-687, https://doi.org/10.1083/jcb.121.3.679.
  119. Zheng, B., Duan, C., and Clemmons, D. R. (1998) The effect of extracellular matrix proteins on porcine smooth muscle cell insulin-like growth factor (IGF) binding protein-5 synthesis and responsiveness to IGF-I, J. Biol. Chem., 273, 8994-9000, https://doi.org/10.1074/jbc.273.15.8994.
  120. Salih, D. A. M., Tripathi, G., Holding, C., Szestak, T. A. M., Gonzalez, M. I., Carter, E. J., Cobb, L. J., Eisemann, J. E., and Pell, J. M. (2004) Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice, Proc. Natl. Acad. Sci. USA, 101, 4314-4319, https://doi.org/10.1073/pnas.0400230101.
  121. Ning, Y., Hoang, B., Schuller, A. G. P., Cominski, T. P., Hsu, M.-S., Wood, T. L., and Pintar, J. E. (2007) Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene, Endocrinology, 148, 2138-2147, https://doi.org/10.1210/en.2006-0041.
  122. Fischer, F., Schulte, H., Mohan, S., Tataru, M., Köhler, E., Assmann, G., and Von Eckardstein, A. (2004) Associations of insulin‐like growth factors, insulin‐like growth factor binding proteins and acid‐labile subunit with coronary heart disease, Clin. Endocrinol. (Oxf), 61, 595-602, https://doi.org/10.1111/j.1365-2265.2004.02136.x.
  123. Rho, S. B., Dong, S. M., Kang, S., Seo, S.-S., Yoo, C. W., Lee, D. O., Woo, J. S., and Park, S.-Y. (2008) Insulin-like growth factor-binding protein-5 (IGFBP-5) acts as a tumor suppressor by inhibiting angiogenesis, Carcinogenesis, 29, 2106-2111, https://doi.org/10.1093/carcin/bgn206.
  124. Martin, J. L., Willetts, K. E., and Baxter, R. C. (1990) Purification and properties of a novel insulin-like growth factor-II binding protein from transformed human fibroblasts, J. Biol. Chem., 265, 4124-4130.
  125. Zhu, W., Wu, Y., Cui, C., Zhao, H.-M., Ba, J., Chen, H., and Yu, J. (2014) Expression of IGFBP-6 in proliferative vitreoretinopathy rat models and its effects on retinal pigment epithelial-J cells, Mol. Med. Rep., 9, 33-38, https://doi.org/10.3892/mmr.2013.1794.
  126. Bach, L. A. (2015) Recent insights into the actions of IGFBP-6, J. Cell Commun. Signal., 9, 189-200, https://doi.org/10.1007/s12079-015-0288-4.
  127. Zhang, C., Lu, L., Li, Y., Wang, X., Zhou, J., Liu, Y., Fu, P., Gallicchio, M. A., Bach, L. A., and Duan, C. (2012) IGF binding protein‐6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis, Int. J. Cancer, 130, 2003-2012, https://doi.org/10.1002/ijc.26201.
  128. Bach, L. A., Fu, P., and Yang, Z. (2013) Insulin-like growth factor-binding protein-6 and cancer, Clin. Sci., 124, 215-229, https://doi.org/10.1042/CS20120343.
  129. Liso, A., Venuto, S., Coda, A. R. D., Giallongo, C., Palumbo, G. A., and Tibullo, D. (2022) IGFBP-6: at the crossroads of immunity, tissue repair and fibrosis, Int. J. Mol. Sci., 23, 4358, https://doi.org/10.3390/ijms23084358.
  130. Liu, Y., Huan, W., Wu, J., Zou, S., and Qu, L. (2020) IGFBP6 is downregulated in unstable carotid atherosclerotic plaques according to an integrated bioinformatics analysis and experimental verification, J. Atheroscler. Thromb., 27, 1068-1085, https://doi.org/10.5551/jat.52993.
  131. Frystyk, J., Skjærbæk, C., Dinesen, B., and Ørskov, H. (1994) Free insulin‐like growth factors (IGF‐I and IGF‐II) in human serum, FEBS Lett., 348, 185-191, https://doi.org/10.1016/0014-5793(94)00602-4.
  132. Berg, U., Bang, P., and Carlsson-Skwirut, C. (2007) Calpain proteolysis of insulin-like growth factor binding protein (IGFBP) -2 and -3, but not of IGFBP-1, Biol. Chem., 388, 859-863, https://doi.org/10.1515/BC.2007.098.
  133. Clay Bunn, R., and Fowlkes, J. L. (2003) Insulin-like growth factor binding protein proteolysis, Trends Endocrinol. Metab., 14, 176-181, https://doi.org/10.1016/S1043-2760(03)00049-3.
  134. Coppock, H. A., White, A., Aplin, J. D., and Westwood, M. (2004) Matrix metalloprotease-3 and -9 proteolyze insulin-like growth factor-binding protein-11, Biol. Reprod., 71, 438-443, https://doi.org/10.1095/biolreprod.103.023101.
  135. Nakamura, M., Miyamoto, S., Maeda, H., Ishii, G., Hasebe, T., Chiba, T., Asaka, M., and Ochiai, A. (2005) Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability, Biochem. Biophys. Res. Commun., 333, 1011-1016, https://doi.org/10.1016/j.bbrc.2005.06.010.
  136. Hills, F. A., Iles, R. K., and Sullivan, M. H. (2013) Differential proteolysis of insulin-like growth factor binding protein-1 (IGFBP-1) in pregnancy, J. Perinat. Med., 41, 241-249, https://doi.org/10.1515/jpm-2012-0086.
  137. Gibson, J. M. (2001) Regulation of IGF bioavailability in pregnancy, Mol. Hum. Reprod., 7, 79-87, https://doi.org/10.1093/molehr/7.1.79.
  138. Martino-Echarri, E., Fernández-Rodríguez, R., Bech-Serra, J. J., Plaza-Calonge, M. D. C., Vidal, N., Casal, C., Colomé, N., Seoane, J., Canals, F., and Rodríguez-Manzaneque, J. C. (2014) Relevance of IGFBP2 proteolysis in glioma and contribution of the extracellular protease ADAMTS1, Oncotarget, 5, 4295-4304, https://doi.org/10.18632/oncotarget.2009.
  139. Giudice, L. C., Farrell, E. M., Pham, H., Lamson, G., and Rosenfeld, R. G. (1990) Insulin-like growth factor binding proteins in maternal serum throughout gestation and in the puerperium: effects of a pregnancy-associated serum protease activity, J. Clin. Endocrinol. Metab., 71, 806-816, https://doi.org/10.1210/jcem-71-4-806.
  140. Maile, L. A., and Holly, J. M. P. (1999) Insulin-like growth factor binding protein (IGFBP) proteolysis: occurrence, identification, role and regulation, Growth Horm. IGF Res., 9, 85-95, https://doi.org/10.1054/ghir.1999.0096.
  141. Cohen, P., Graves, H. C., Peehl, D. M., Kamarei, M., Giudice, L. C., and Rosenfeld, R. G. (1992) Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma, J. Clin. Endocrinol. Metab., 75, 1046-1053, https://doi.org/10.1210/jcem.75.4.1383255.
  142. Marinaro, J. A., Hendrich, E. C., Leeding, K. S., and Bach, L. A. (1999) HaCaT human keratinocytes express IGF-II, IGFBP-6, and an acid-activated protease with activity against IGFBP-6, Am. J. Physiol. Endocrinol. Metab., 276, E536-E542, https://doi.org/10.1152/ajpendo.1999.276.3.E536.
  143. Gibson, T. L. B., and Cohen, P. (1999) Inflammation-related neutrophil proteases, cathepsin G and elastase, function as insulin-like growth factor binding protein proteases, Growth Horm. IGF Res., 9, 241-253, https://doi.org/10.1054/ghir.1999.0115.
  144. Arai, T., Arai, A., Busby, W. H., and Clemmons, D. R. (1994) Glycosaminoglycans inhibit degradation of insulin-like growth factor-binding protein-5, Endocrinology, 135, 2358-2363, https://doi.org/10.1210/endo.135.6.7527332.
  145. Shalamanova, L., Kübler, B., Scharf, J.-G., and Braulke, T. (2001) MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6, Am. J. Physiol. Endocrinol. Metab., 281, E1221-E1229, https://doi.org/10.1152/ajpendo.2001.281.6.E1221.
  146. Dean, R. A., Butler, G.S., Hamma-Kourbali, Y., Delbé, J., Brigstock, D. R., Courty, J., and Overall, C. M. (2007) Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis, Mol. Cell. Biol., 27, 8454-8465, https://doi.org/10.1128/MCB.00821-07.
  147. Larsen, P. H., DaSilva, A. G., Conant, K., and Yong, V. W. (2006) Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12 null mice, J. Neurosci., 26, 2207-2214, https://doi.org/10.1523/JNEUROSCI.1880-05.2006.
  148. Overgaard, M. T., Boldt, H. B., Laursen, L. S., Sottrup-Jensen, L., Conover, C. A., and Oxvig, C. (2001) Pregnancy-associated plasma protein-A2 (PAPP-A2), a novel insulin-like growth factor-binding protein-5 proteinase, J. Biol. Chem., 276, 21849-21853, https://doi.org/10.1074/jbc.M102191200.
  149. Laursen, L. S., Overgaard, M. T., Nielsen, C. G., Boldt, H. B., Hopmann, K. H., Conover, C. A., Sottrup-Jensen, L., Giudice, L. C., and Oxvig, C. (2002) Substrate specificity of the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) assessed by mutagenesis and analysis of synthetic peptides: substrate residues distant from the scissile bond are critical for proteolysis, Biochem. J., 367, 31-40, https://doi.org/10.1042/bj20020831.
  150. Monget, P. (2002) Pregnancy-associated plasma protein-A is involved in insulin-like growth factor binding protein-2 (IGFBP-2) proteolytic degradation in bovine and porcine preovulatory follicles: identification of cleavage site and characterization of IGFBP-2 degradation, Biol. Reprod., 68, 77-86, https://doi.org/10.1095/biolreprod.102.007609.
  151. Mazerbourg, S., Callebaut, I., Zapf, J., Mohan, S., Overgaard, M., and Monget, P. (2004) Up date on IGFBP-4: regulation of IGFBP-4 levels and functions, in vitro and in vivo, Growth Horm. IGF Res., 14, 71-84, https://doi.org/10.1016/j.ghir.2003.10.002.
  152. Adasheva, D. A., Lebedeva, O. S., Goliusova, D. V., Postnikov, A. B., Teriakova, M. V., Kopylova, I. V., Lagarkova, M. A., Katrukha, A. G., and Serebryanaya, D. V. (2023) PAPP-A-specific IGFBP-4 proteolysis in human induced pluripotent stem cell-derived cardiomyocytes, Int. J. Mol. Sci., 24, 8420, https://doi.org/10.3390/ijms24098420.
  153. Prudova, A., Auf Dem Keller, U., Butler, G. S., and Overall, C. M. (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics, Mol. Cell. Proteomics, 9, 894-911, https://doi.org/10.1074/mcp.M000050-MCP201.
  154. Xin, Z., Ma, Z., Jiang, S., Wang, D., Fan, C., Di, S., Hu, W., Li, T., She, J., and Yang, Y. (2017) FOXOs in the impaired heart: new therapeutic targets for cardiac diseases, Biochim. Biophys. Acta BBA Mol. Basis Dis., 1863, 486-498, https://doi.org/10.1016/j.bbadis.2016.11.023.
  155. Skurk, C., Izumiya, Y., Maatz, H., Razeghi, P., Shiojima, I., Sandri, M., Sato, K., Zeng, L., Schiekofer, S., Pimentel, D., Lecker, S., Taegtmeyer, H., Goldberg, A. L., and Walsh, K. (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling, J. Biol. Chem., 280, 20814-20823, https://doi.org/10.1074/jbc.M500528200.
  156. Jung, H. J., and Suh, Y. (2015) Regulation of IGF-1 signaling by microRNAs, Front. Genet., 5, https://doi.org/10.3389/fgene.2014.00472.
  157. Meng, X., Cui, J., and He, G. (2021) Bcl-2 is involved in cardiac hypertrophy through PI3K-Akt pathway, BioMed Res. Int., 2021, 1-8, https://doi.org/10.1155/2021/6615502.
  158. Xia, P., Liu, Y., and Cheng, Z. (2016) Signaling pathways in cardiac myocyte apoptosis, BioMed Res. Int., 2016, 1-22, https://doi.org/10.1155/2016/9583268.
  159. Sugden, P. H., Fuller, S. J., Weiss, S. C., and Clerk, A. (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis, Br. J. Pharmacol., 153, https://doi.org/10.1038/sj.bjp.0707659.
  160. Sciarretta, S., Volpe, M., and Sadoshima, J. (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease, Circ. Res., 114, 549-564, https://doi.org/10.1161/CIRCRESAHA.114.302022.
  161. Xu, L., and Brink, M. (2016) mTOR, cardiomyocytes and inflammation in cardiac hypertrophy, Biochim. Biophys. Acta BBA Mol. Cell Res., 1863, 1894-1903, https://doi.org/10.1016/j.bbamcr.2016.01.003.
  162. Kim, J., Wende, A. R., Sena, S., Theobald, H. A., Soto, J., Sloan, C., Wayment, B. E., Litwin, S. E., Holzenberger, M., LeRoith, D., and Abel, E. D. (2008) Insulin-like Growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy, Mol. Endocrinol., 22, 2531-2543, https://doi.org/10.1210/me.2008-0265.
  163. Gallo, S., Vitacolonna, A., Bonzano, A., Comoglio, P., and Crepaldi, T. (2019) ERK: a key player in the pathophysiology of cardiac hypertrophy, Int. J. Mol. Sci., 20, 2164, https://doi.org/10.3390/ijms20092164.
  164. Huang, C., Lee, F., Peng, S., Lin, K., Chen, R., Ho, T., Tsai, F., Padma, V. V., Kuo, W., and Huang, C. (2018) HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF‐IIR expression for hypertension‐induced cardiomyocyte hypertrophy, J. Cell. Physiol., 233, 979-989, https://doi.org/10.1002/jcp.25945.
  165. Bayes-Genis, A., Conover, C. A., Overgaard, M. T., Bailey, K. R., Christiansen, M., Holmes, D. R., Virmani, R., Oxvig, C., and Schwartz, R. S. (2001) Pregnancy-associated plasma protein A as a marker of acute coronary syndromes, N. Engl. J. Med., 345, 1022-1029, https://doi.org/10.1056/NEJMoa003147.
  166. Higashi, Y., Gautam, S., Delafontaine, P., and Sukhanov, S. (2019) IGF-1 and cardiovascular disease, Growth Horm. IGF Res., 45, 6-16, https://doi.org/10.1016/j.ghir.2019.01.002.
  167. Beaudeux, J.-L., Burc, L., Imbert-Bismut, F., Giral, P., Bernard, M., Bruckert, E., and Chapman, M. J. (2003) Serum plasma pregnancy-associated protein A: a potential marker of echogenic carotid atherosclerotic plaques in asymptomatic hyperlipidemic subjects at high cardiovascular risk, Arterioscler. Thromb. Vasc. Biol., 23, https://doi.org/10.1161/01.ATV.0000047448.76485.B8.
  168. Štulc, T., Malbohan, I., Malík, J., Fialová, L., Soukupová, J., and Češka, R. (2003) Increased levels of pregnancy-associated plasma protein-A in patients with hypercholesterolemia: the effect of atorvastatin treatment, Am. Heart J., 146, 1060-1063, https://doi.org/10.1016/S0002-8703(03)00446-0.
  169. Khan, N. U., Khan, F.A., Khan, D.A., and Asim, N. (2011) Pregnancy-associated plasma protein-A levels in individuals with and without coronary artery disease, J. Coll. Physicians Surg. Pak. JCPSP., 21, 450-454.
  170. Gutiérrez-Leonard, H., Martínez-Lara, E., Fierro-Macías, A. E., Mena-Burciaga, V. M., Ronquillo-Sánchez, M. D., Floriano-Sánchez, E., and Cárdenas-Rodríguez, N. (2017) Pregnancy-associated plasma protein-A (PAPP-A) as a possible biomarker in patients with coronary artery disease, Ir. J. Med. Sci., 186, 597-605, https://doi.org/10.1007/s11845-016-1515-6.
  171. Mueller, T., Dieplinger, B., Forstner, T., Poelz, W., and Haltmayer, M. (2010) Pregnancy-associated plasma protein-A as a marker for long-term mortality in patients with peripheral atherosclerosis: inconclusive findings from the Linz peripheral arterial disease (LIPAD) study, Clin. Chem. Lab. Med., 48, 537-542, https://doi.org/10.1515/CCLM.2010.103.
  172. Conover, C. A., Mason, M. A., Bale, L. K., Harrington, S. C., Nyegaard, M., Oxvig, C., and Overgaard, M. T. (2010) Transgenic overexpression of pregnancy-associated plasma protein-A in murine arterial smooth muscle accelerates atherosclerotic lesion development, Am. J. Physiol. Heart Circ. Physiol., 299, H284-H291, https://doi.org/10.1152/ajpheart.00904.2009.
  173. Harrington, S. C., Simari, R. D., and Conover, C. A. (2007) Genetic deletion of pregnancy-associated plasma protein-A is associated with resistance to atherosclerotic lesion development in apolipoprotein E-deficient mice challenged with a high-fat diet, Circ. Res., 100, 1696-1702, https://doi.org/10.1161/CIRCRESAHA.106.146183.
  174. Conover, C. A., Bale, L. K., and Oxvig, C. (2016) Targeted inhibition of pregnancy-associated plasma protein-A activity reduces atherosclerotic plaque burden in mice, J. Cardiovasc. Transl. Res., 9, 77-79, https://doi.org/10.1007/s12265-015-9666-9.
  175. Boldt, H. B., Bale, L. K., Resch, Z. T., Oxvig, C., Overgaard, M. T., and Conover, C. A. (2013) Effects of mutated pregnancy-associated plasma protein-A on atherosclerotic lesion development in mice, Endocrinology, 154, 246-252, https://doi.org/10.1210/en.2012-1552.
  176. Jepsen, M. R., Kløverpris, S., Mikkelsen, J. H., Pedersen, J. H., Füchtbauer, E.-M., Laursen, L. S., and Oxvig, C. (2015) Stanniocalcin-2 inhibits mammalian growth by proteolytic inhibition of the insulin-like growth factor axis, J. Biol. Chem., 290, 3430-3439, https://doi.org/10.1074/jbc.M114.611665.
  177. Sun, Y., Chen, D., Cao, L., Zhang, R., Zhou, J., Chen, H., Li, Y., Li, M., Cao, J., and Wang, Z. (2013) MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A, Cardiovasc. Res., 100, 272-279, https://doi.org/10.1093/cvr/cvt172.
  178. Yu, X.-H., He, L.-H., Gao, J.-H., Zhang, D.-W., Zheng, X.-L., and Tang, C.-K. (2018) Pregnancy-associated plasma protein-A in atherosclerosis: molecular marker, mechanistic insight, and therapeutic target, Atherosclerosis, 278, 250-258, https://doi.org/10.1016/j.atherosclerosis.2018.10.004.
  179. McGill, H. C., and McMahan, C. A. (1998) Determinants of atherosclerosis in the young, Am. J. Cardiol., 82, 30-36, https://doi.org/10.1016/S0002-9149(98)00720-6.
  180. Wilson, P. (1998) Diabetes mellitus and coronary heart disease, Am. J. Kidney Dis., 32, S89-S100, https://doi.org/10.1053/ajkd.1998.v32.pm9820468.
  181. Stone, P. H., Muller, J. E., Hartwell, T., York, B. J., Rutherford, J. D., Parker, C. B., Turi, Z. G., Strauss, H. W., Willerson, J. T., Robertson, T., Braunwald, E., and Jaffe, A. S. (1989) The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis, J. Am. Coll. Cardiol., 14, 49-57, https://doi.org/10.1016/0735-1097(89)90053-3.
  182. Singer, D. E., Moulton, A. W., and Nathan, D. M. (1989) Diabetic myocardial infarction: interaction of diabetes with other preinfarction risk factors, Diabetes, 38, 350-357, https://doi.org/10.2337/diab.38.3.350.
  183. Haffner, S. M. (1990) Cardiovascular risk factors in confirmed prediabetic individuals: does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA, 263, 2893, https://doi.org/10.1001/jama.1990.03440210043030.
  184. Colao, A., Spiezia, S., Di Somma, C., Pivonello, R., Marzullo, P., Rota, F., Musella, T., Auriemma, R. S., De Martino, M. C., and Lombardi, G. (2005) Circulating insulin-like growth factor-I levels are correlated with the atherosclerotic profile in healthy subjects independently of age, J. Endocrinol. Invest., 28, 440-448, https://doi.org/10.1007/BF03347225.
  185. Conti, E., Andreotti, F., Sciahbasi, A., Riccardi, P., Marra, G., Menini, E., Ghirlanda, G., and Maseri, A. (2001) Markedly reduced insulin-like growth factor-1 in the acute phase of myocardial infarction, J. Am. Coll. Cardiol., 38, 26-32, https://doi.org/10.1016/S0735-1097(01)01367-5.
  186. Juul, A., Scheike, T., Davidsen, M., Gyllenborg, J., and Jørgensen, T. (2002) Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study, Circulation, 106, 939-944, https://doi.org/10.1161/01.CIR.0000027563.44593.CC.
  187. Reeves, I., Abribat, T., Laramee, P., Jasmin, G., and Brazeau, P. (2000) Age-related serum levels of insulin-like growth factor-I, -II and IGF-binding protein-3 following myocardial infarction, Growth Horm. IGF Res., 10, 78-84, https://doi.org/10.1054/ghir.2000.0143.
  188. Booth, B. A., Boes, M., and Bar, R. S. (1996) IGFBP-3 proteolysis by plasmin, thrombin, serum: heparin binding, IGF binding, and structure of fragments, Am. J. Physiol. Endocrinol. Metab., 271, E465-E470, https://doi.org/10.1152/ajpendo.1996.271.3.E465.
  189. Bang, P., Brismar, K., and Rosenfeld, R. G. (1994) Increased proteolysis of insulin-like growth factor-binding protein-3 (IGFBP-3) in noninsulin-dependent diabetes mellitus serum, with elevation of a 29-kilodalton (kDa) glycosylated IGFBP-3 fragment contained in the approximately 130- to 150-kDa ternary complex, J. Clin. Endocrinol. Metab., 78, 1119-1127, https://doi.org/10.1210/jcem.78.5.7513716.
  190. Vaessen, N., Heutink, P., Janssen, J. A., Witteman, J. C. M., Testers, L., Hofman, A., Lamberts, S. W. J., Oostra, B. A., Pols, H. A. P., and Van Duijn, C. M. (2001) A polymorphism in the gene for IGF-I, Diabetes, 50, 637-642, https://doi.org/10.2337/diabetes.50.3.637.
  191. Heald, A. H., Anderson, S. G., Ivison, F., Laing, I., Gibson, J. M., and Cruickshank, K. (2003) C-reactive protein and the insulin-like growth factor (IGF)-system in relation to risk of cardiovascular disease in different ethnic groups, Atherosclerosis, 170, 79-86, https://doi.org/10.1016/S0021-9150(03)00235-1.
  192. Kucukhuseyin, O., Toptas, B., Timirci-Kahraman, O., Isbir, S., Karsidag, K., and Isbir, T. (2015) The effect of GHR/exon-3 polymorphism and serum GH, IGF-1 and IGFBP-3 levels in diabetes and coronary heart disease, In Vivo, 29, 371-378.
  193. Marra, A. M., Bobbio, E., D’Assante, R., Salzano, A., Arcopinto, M., Bossone, E., and Cittadini, A. (2018) Growth hormone as biomarker in heart failure, Heart Fail. Clin., 14, 65-74, https://doi.org/10.1016/j.hfc.2017.08.008.
  194. Hu, W. S., and Hwang, J. M. (2012) Association of serum cytokines, human growth hormone, insulin-like growth factor (IGF)-I, IGF-II and IGF-binding protein (IGFBP)-3 with coronary artery disease, Chin. J. Physiol., 55, 267-273, https://doi.org/10.4077/CJP.2012.BAA043.
  195. Guven, A., Demircelik, B., Selcoki, Y., Gurel, O., Er, O., Aydin, H., Bozkurt, A., and Eryonucu, B. (2017) A coronary proatherosclerotic marker: Pregnancy-associated plasma protein A and its association with coronary calcium score and carotid intima-media thickness, Adv. Clin. Exp. Med., 26, 467-473, https://doi.org/10.17219/acem/62225.
  196. Lund, J., Qin, Q.-P., Ilva, T., Pettersson, K., Voipio-Pulkki, L.-M., Porela, P., and Pulkki, K. (2003) Circulating pregnancy-associated plasma protein A predicts outcome in patients with acute coronary syndrome but no troponin I elevation, Circulation, 108, 1924-1926, https://doi.org/10.1161/01.CIR.0000096054.18485.07.
  197. Heeschen, C., Dimmeler, S., Hamm, C. W., Fichtlscherer, S., Simoons, M. L., and Zeiher, A. M. (2005) Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes, J. Am. Coll. Cardiol., 45, 229-237, https://doi.org/10.1016/j.jacc.2004.09.060.
  198. Yeves, A. M., Burgos, J. I., Medina, A. J., Villa‐Abrille, M. C., and Ennis, I. L. (2018) Cardioprotective role of IGF‐1 in the hypertrophied myocardium of the spontaneously hypertensive rats: a key effect on NHE‐1 activity, Acta Physiol., 224, e13092, https://doi.org/10.1111/apha.13092.
  199. Sui, Y., Zhang, W., Tang, T., Gao, L., Cao, T., Zhu, H., You, Q., Yu, B., and Yang, T. (2020) Insulin-like growth factor-II overexpression accelerates parthenogenetic stem cell differentiation into cardiomyocytes and improves cardiac function after acute myocardial infarction in mice, Stem Cell Res. Ther., 11, 86, https://doi.org/10.1186/s13287-020-1575-4.
  200. Lin, M., Liu, X., Zheng, H., Huang, X., Wu, Y., Huang, A., Zhu, H., Hu, Y., Mai, W., and Huang, Y. (2020) IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway, Stem Cell Res. Ther., 11, 22, https://doi.org/10.1186/s13287-019-1544-y.
  201. Vinciguerra, M., Santini, M. P., Claycomb, W. C., Ladurner, A. G., and Rosenthal, N. (2009) Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity, Aging, 2, 43-62, https://doi.org/10.18632/aging.100107.
  202. Huynh, K., McMullen, J. R., Julius, T. L., Tan, J. W., Love, J. E., Cemerlang, N., Kiriazis, H., Du, X.-J., and Ritchie, R. H. (2010) Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy, Diabetes, 59, 1512-1520, https://doi.org/10.2337/db09-1456.
  203. Friehs, I., Stamm, C., Cao-Danh, H., McGowan, F. X., and Del Nido, P. J. (2001) Insulin-like growth factor-1 improves postischemic recovery in hypertrophied hearts, Ann. Thorac. Surg., 72, 1650-1656, https://doi.org/10.1016/S0003-4975(01)03098-3.
  204. Otani, H., Yamamura, T., Nakao, Y., Hattori, R., Kawaguchi, H., Osako, M., and Imamura, H. (2000) Insulin-like growth factor-I improves recovery of cardiac performance during reperfusion in isolated rat heart by a wortmannin-sensitive mechanism, J. Cardiovasc. Pharmacol., 35, 275-281, https://doi.org/10.1097/00005344200002000-00015.
  205. Moses, A. C., Young, S. C., Morrow, L. A., O’Brien, M., and Clemmons, D. R. (1996) Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes, Diabetes, 45, 91-100, https://doi.org/10.2337/diab.45.1.91.
  206. Donath, M. Y., Sütsch, G., Yan, X.-W., Piva, B., Brunner, H.-P., Glatz, Y., Zapf, J., Follath, F., Froesch, E. R., and Kiowski, W. (1998) Acute cardiovascular effects of insulin-like growth factor I in patients with chronic heart failure, J. Clin. Endocrinol. Metab., 83, 3177-3183, https://doi.org/10.1210/jcem.83.9.5122.
  207. Wang, R., Xi, L., and Kukreja, R.C. (2017) PDE5 inhibitor tadalafil and hydroxychloroquine cotreatment provides synergistic protection against type 2 diabetes and myocardial infarction in mice, J. Pharmacol. Exp. Ther., 361, 29-38, https://doi.org/10.1124/jpet.116.239087.
  208. Cignarelli, A., Genchi, V. A., Le Grazie, G., Caruso, I., Marrano, N., Biondi, G., D’Oria, R., Sorice, G. P., Natalicchio, A., Perrini, S., Laviola, L., and Giorgino, F. (2022) Mini review: effect of GLP-1 receptor agonists and SGLT-2 inhibitors on the growth hormone/IGF axis, Front. Endocrinol., 13, 846903, https://doi.org/10.3389/fendo.2022.846903.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences