Hereditary conditions associated with elevated cancer risk in childhood

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The widespread use of next-generation sequencing (NGS) technologies revealed that a significant percentage of tumors in children develop as a part of monogenic hereditary diseases. Predisposition to the development of pediatric neoplasms is characteristic of a wide range of conditions including hereditary tumor syndromes, primary immunodeficiencies, rasopathies, and phakomatosis. The mechanisms of tumor molecular pathogenesis are diverse and include disturbances in signaling cascades, defects in DNA repair, chromatin remodeling, and microRNA processing. Timely diagnosis of tumor-associated syndromes is important for the proper choice of cancer treatment, genetic counseling of families, and the development of surveillance programs. The review describes the spectrum of neoplasms characteristic of the most common syndromes and the molecular pathogenesis of these diseases.

About the authors

E. N Suspitsin

N. N. Petrov Institute of Oncology;Saint-Petersburg State Pediatric Medical University

Email: evgeny.suspitsin@gmail.com
197758 St.-Petersburg, Russia;194100 St.-Petersburg, Russia

E. N Imyanitov

N. N. Petrov Institute of Oncology;Saint-Petersburg State Pediatric Medical University

197758 St.-Petersburg, Russia;194100 St.-Petersburg, Russia

References

  1. Parsons, D. W., Roy, A., Yang, Y., Wang, T., Scollon, S., Bergstrom, K., Kerstein, R. A., Gutierrez, S., Petersen, A. K., Bavle, A., Lin, F. Y., López-Terrada, D. H., Monzon, F. A., Hicks, M. J., Eldin, K. W., Quintanilla, N. M., Adesina, A. M., Mohila, C. A., Whitehead, W., Jea, A., Vasudevan, S. A., Nuchtern, J. G., Ramamurthy, U., McGuire, A. L., Hilsenbeck, S. G., Reid, J. G., Muzny, D. M., Wheeler, D. A., Berg, S. L., Chintagumpala, M. M., Eng, C. M., Gibbs, R. A., and Plon, S. E. (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors, JAMA Oncol., 2, 616-624, doi: 10.1001/jamaoncol.2015.5699.
  2. Zhang, J., Walsh, M. F., Wu, G., Edmonson, M. N., Gruber, T. A., Easton, J., Hedges, D., Ma, X., Zhou, X., Yergeau, D. A., Wilkinson, M. R., Vadodaria, B., Chen, X., McGee, R. B., Hines-Dowell, S., Nuccio, R., Quinn, E., Shurtleff, S. A., Rusch, M., Patel, A., Becksfort, J. B., Wang, S., Weaver, M. S., Ding, L., Mardis, E. R., Wilson, R. K., Gajjar, A., Ellison, D. W., Pappo, A. S., Pui, C. H., Nichols, K. E., and Downing, J. R. (2015) Germline mutations in predisposition genes in pediatric cancer, N. Engl. J. Med., 373, 2336-2346, doi: 10.1056/nejmoa1508054.
  3. Gröbner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., Johann, P. D., Balasubramanian, G. P., Segura-Wang, M., Brabetz, S., Bender, S., Hutter, B., Sturm, D., Pfaff, E., Hübschmann, D., Zipprich, G., Heinold, M., Eils, J., Lawerenz, C., Erkek, S., Lambo, S., Waszak, S., Blattmann, C., Borkhardt, A., Kuhlen, M., Eggert, A., Fulda, S., Gessler, M., Wegert, J., Kappler, R., Baumhoer, D., Burdach, S., Kirschner-Schwabe, R., Kontny, U., Kulozik, A. E., Lohmann, D., Hettmer, S., Eckert, C., Bielack, S., Nathrath, M., Niemeyer, C., Richter, G. H., Schulte, J., Siebert, R., Westermann, F., Molenaar, J. J., Vassal, G., Witt, H., ICGC PedBrain-Seq Project, ICGC MMML-Seq Project, Burkhardt, B., Kratz, C. P., Witt, O., van Tilburg, C. M., Kramm, C. M., Fleischhack, G., Dirksen, U., Rutkowski, S., Frühwald, M., von Hoff, K., Wolf, S., Klingebiel, T., Koscielniak, E., Landgraf, P., Koster, J., Resnick, A. C., Zhang, J., Liu, Y., Zhou, X., Waanders, A. J., Zwijnenburg, D. A., Raman, P., Brors, B., Weber, U. D., Northcott, P. A., Pajtler, K. W., Kool, M., Piro, R. M., Korbel, J. O., Schlesner, M., Eils, R., Jones, D. T. W., Lichter, P., Chavez, L., Zapatka, M., and Pfister, S. M. (2018) The landscape of genomic alterations across childhood cancers, Nature, 555, 321-327, doi: 10.1038/nature25480.
  4. Kratz, C. P., Jongmans, M. C., Cavé, H., Wimmer, K., Behjati, S., Guerrini-Rousseau, L., Milde, T., Pajtler, K. W., Golmard, L., Gauthier-Villars, M., Jewell, R., Duncan, C., Maher, E. R., Brugieres, L., Pritchard-Jones, K., and Bourdeaut, F. (2021) Predisposition to cancer in children and adolescents, Lancet Child Adolesc. Heal., 5, 142-154, doi: 10.1016/S2352-4642(20)30275-3.
  5. Filbin, M., and Monje, M. (2019) Developmental origins and emerging therapeutic opportunities for childhood cancer, Nat. Med., 25, 367-376, doi: 10.1038/s41591-019-0383-9.
  6. Jongmans, M. C. J., Loeffen, J. L. C. M., Waanders, E., Hoogerbrugge, P. M., Ligtenberg, M. J., Kuiper, R. P., and Hoogerbrugge, N. (2016) Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool, Eur. J. Med. Genet., 59, 116-125, doi: 10.1016/J.EJMG.2016.01.008.
  7. Kesserwan, C., Friedman Ross, L., Bradbury, A. R., and Nichols, K. E. (2016) The advantages and challenges of testing children for heritable predisposition to cancer, Am. Soc. Clin. Oncol. Educ. B., 35, 251-269, doi: 10.1200/EDBK_160621.
  8. Goudie, C., Witkowski, L., Cullinan, N., Reichman, L., Schiller, I., Tachdjian, M., Armstrong, L., Blood, K. A., Brossard, J., Brunga, L., Cacciotti, C., Caswell, K., Cellot, S., Clark, M. E., Clinton, C., Coltin, H., Felton, K., Fernandez, C. V., Fleming, A. J., Fuentes-Bolanos, N., Gibson, P., Grant, R., Hammad, R., Harrison, L. W., Irwin, M. S., Johnston, D. L., Kane, S., Lafay-Cousin, L., Lara-Corrales, I., Larouche, V., Mathews, N., Meyn, M. S., Michaeli, O., Perrier, R., Pike, M., Punnett, A., Ramaswamy, V., Say, J., Somers, G., Tabori, U., Thibodeau, M. L., Toupin, A. K., Tucker, K. M., van Engelen, K., Vairy, S., Waespe, N., Warby, M., Wasserman, J. D., Whitlock, J. A., Sinnett, D., Jabado, N., Nathan, P. C., Shlien, A., Kamihara, J., Deyell, R. J., Ziegler, D. S., Nichols, K. E., Dendukuri, N., Malkin, D., Villani, A., and Foulkes, W. D. (2021) Performance of the McGill Interactive Pediatric OncoGenetic Guidelines for identifying cancer predisposition syndromes, JAMA Oncol., 7, 1806-1814, doi: 10.1001/JAMAONCOL.2021.4536.
  9. Postema, F. A. M., Hopman, S. M. J., Aalfs, C. M., Berger, L. P. V., Bleeker, F. E., Dommering, C. J., Jongmans, M. C. J., Letteboer, T. G. W., Olderode-Berends, M. J.W., Wagner, A., Hennekam, R. C., and Merks, J. H. M. (2017) Childhood tumours with a high probability of being part of a tumour predisposition syndrome; reason for referral for genetic consultation, Eur. J. Cancer, 80, 48-54, doi: 10.1016/j.ejca.2017.04.021.
  10. Brugières, L., Remenieras, A., Pierron, G., Varlet, P., Forget, S., Byrde, V., Bombled, J., Puget, S., Caron, O., Dufour, C., Delattre, O., Bressac-de Paillerets, B., and Grill, J. (2012) High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age, J. Clin. Oncol., 30, 2087-2093, doi: 10.1200/JCO.2011.38.7258.
  11. Кулева С. А., Имянитов Е. Н. (2017) Опухоль Вильмса: синдромальная и молекулярная диагностика, Онкопедиатрия, 4, 283-289, doi: 10.15690/onco.v4i4.1814.
  12. Treger, T. D., Chowdhury, T., Pritchard-Jones, K., and Behjati, S. (2019) The genetic changes of Wilms tumour, Nat. Rev. Nephrol., 15, 240-251, doi: 10.1038/S41581-019-0112-0.
  13. Gadd, S., Huff, V., Walz, A. L., Ooms, A. H. A. G., Armstrong, A. E., Gerhard, D. S., Smith, M. A., Auvil, J. M. G., Meerzaman, D., Chen, Q. R., Hsu, C. H., Yan, C., Nguyen, C., Hu, Y., Hermida, L. C., Davidsen, T., Gesuwan, P., Ma, Y., Zong, Z., Mungall, A. J., Moore, R. A., Marra, M. A., Dome, J. S., Mullighan, C. G., Ma, J., Wheeler, D. A., Hampton, O. A., Ross, N., Gastier-Foster, J. M., Arold, S. T., and Perlman, E. J. (2017) A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor, Nat. Genet., 49, 1487-1494, doi: 10.1038/ng.3940.
  14. Friend, S. H., Horowitz, J. M., Gerber, M. R., Wang, X. F., Bogenmann, E., Li, F. P., and Weinberg, R. A. (1987) Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein, Proc. Natl. Acad. Sci. USA, 84, 9059-9063, doi: 10.1073/PNAS.84.24.9059.
  15. Mendoza, P. R., and Grossniklaus, H. E. (2015) The biology of retinoblastoma, Prog. Mol. Biol. Transl. Sci., 134, 503-516, doi: 10.1016/BS.PMBTS.2015.06.012.
  16. Frebourg, T., Bajalica Lagercrantz, S., Oliveira, C., Magenheim, R., Evans, D. G., and European Reference Network GENTURIS (2020) Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes, Eur. J. Hum. Genet., 28, 1379-1386, doi: 10.1038/S41431-020-0638-4.
  17. Bougeard, G., Renaux-Petel, M., Flaman, J. M., Charbonnier, C., Fermey, P., Belotti, M., Gauthier-Villars, M., Stoppa-Lyonnet, D., Consolino, E., Brugières, L., Caron, O., Benusiglio, P. R., Bressac-de Paillerets, B., Bonadona, V., Bonaïti-Pellié, C., Tinat, J., Baert-Desurmont, S., and Frebourg, T. (2015) Revisiting Li-Fraumeni syndrome from TP53 mutation carriers, J. Clin. Oncol., 33, 2345-2352, doi: 10.1200/JCO.2014.59.5728.
  18. Hettmer, S., Archer, N. M., Somers, G. R., Novokmet, A., Wagers, A. J., Diller, L., Rodriguez-Galindo, C., Teot, L. A., and Malkin, D. (2014) Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers, Cancer, 120, 1068-1075, doi: 10.1002/cncr.28507.
  19. Foulkes, W. D., Kamihara, J., Evans, D. G. R., Brugières, L., Bourdeaut, F., Molenaar, J. J., Walsh, M. F., Brodeur, G. M., and Diller, L. (2017) Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome, Clin. Cancer. Res., 23, e62-e67, doi: 10.1158/1078-0432.CCR-17-0595.
  20. Yanus, G. A., Akhapkina, T. A., Iyevleva, A. G., Kornilov, A. V., Suspitsin, E. N., Kuligina, E. S., Ivantsov, A. O., Aleksakhina, S. N., Sokolova, T. N., Sokolenko, A. P., Togo, A. V., and Imyanitov, E. N. (2020) The spectrum of Lynch syndrome-associated germ-line mutations in Russia, Eur. J. Med. Genet., 63, 103753, doi: 10.1016/j.ejmg.2019.103753.
  21. Wimmer, K., Kratz, C. P., Vasen, H. F. A., Caron, O., Colas, C., Entz-Werle, N., Gerdes, A. M., Goldberg, Y., Ilencikova, D., Muleris, M., Duval, A., Lavoine, N., Ruiz-Ponte, C., Slavc, I., Burkhardt, B., Brugieres, L., and EU-Consortium Care for CMMRD (C4CMMRD) (2014) Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium "care for CMMRD" (C4CMMRD), J. Med. Genet., 51, 355-365, doi: 10.1136/JMEDGENET-2014-102284.
  22. Wilson, B. G., and Roberts, C. W. M. (2011) SWI/SNF nucleosome remodellers and cancer, Nat. Rev. Cancer, 11, 481-492, doi: 10.1038/NRC3068.
  23. Lee, R. S., Stewart, C., Carter, S. L., Ambrogio, L., Cibulskis, K., Sougnez, C., Lawrence, M. S., Auclair, D., Mora, J., Golub, T. R., Biegel, J. A., Getz, G., and Roberts, C. W. (2012) A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers, J. Clin. Invest., 122, 2983-2988, doi: 10.1172/JCI64400.
  24. Kim, K. H., and Roberts, C. W. M. (2014) Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth, Cancer Genet., 207, 365-372, doi: 10.1016/J.CANCERGEN.2014.04.004.
  25. González, I. A., Stewart, D. R., Schultz, K. A. P., Field, A. P., Hill, D. A., and Dehner, L. P. (2022) DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma, Mod. Pathol., 35, 4-22, doi: 10.1038/S41379-021-00905-8.
  26. De Kock, L., Wu, M. K., and Foulkes, W. D. (2019) Ten years of DICER1 mutations: provenance, distribution, and associated phenotypes, Hum. Mutat., 40, 1939-1953, doi: 10.1002/HUMU.23877.
  27. Hill, D. A., Brenneman, M., Field, A., Williams, G., Doros, L., Rossi, C., Schultz, K. A., Rosenberg, A., Ivanovich, J., Turner, J., Gordish-Dressman, H., Stewart, D., Yu, W., Harris, A., Schoettler, P., Goodfellow, P., Dehner, L., Messinger, Y., and Hill, D. A. (2015) Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in pleuropulmonary blastoma / DICER1 syndrome: a unique variant of the two-hit tumor suppression model, F1000Res., 4, 214, doi: 10.12688/F1000RESEARCH.6746.2.
  28. Suspitsin, E. N., Guseva, M. N., Kostik, M. M., Sokolenko, A. P., Skripchenko, N. V., Levina, A. S., Goleva, O. V., Dubko, M. F., Tumakova, A. V., Makhova, M. A., Lyazina, L. V., Bizin, I. V., Sokolova, N. E., Gabrusskaya, T. V., Ditkovskaya, L. V., Kozlova, O. P., Vahliarskaya, S. S., Kondratenko, I. V., and Imyanitov, E. N. (2020) Next-generation sequencing analysis of consecutive Russian patients with clinical suspicion of inborn errors of immunity, Clin. Genet., 98, 231-239, doi: 10.1111/cge.13789.
  29. Tiri, A., Masetti, R., Conti, F., Tignanelli, A., Turrini, E., Bertolini, P., Esposito, S., Pession, A. (2021) Inborn errors of immunity and cancer, Biology (Basel), 10, 313, doi: 10.3390/biology10040313.
  30. Salavoura, K., Kolialexi, A., Tsangaris, G., and Mavrou, A. (2008) Development of cancer in patients with primary immunodeficiencies, Anticancer Res., 28, 1263-1269.
  31. Mortaz, E., Tabarsi, P., Mansouri, D., Khosravi, A., Garssen, J., Velayati, A., and Adcock, I. M. (2016) Cancers related to immunodeficiencies: update and perspectives, Front. Immunol., 7, 365, doi: 10.3389/fimmu.2016.00365.
  32. Bomken, S., van der Werff Ten Bosch, J., Attarbaschi, A., Bacon, C. M., Borkhardt, A Boztug, K., Fischer, U., Hauck, F., Kuiper, R. P., Lammens, T., Loeffen, J., Neven, B., Pan-Hammarström, Q., Quinti, I., Seidel, M. G., Warnatz, K., Wehr, C., Lankester, A. C., and Gennery, A. R. (2018) Current Understanding and future research priorities in malignancy associated with inborn errors of immunity and DNA repair disorders: the perspective of an Interdisciplinary Working Group, Front. Immunol., 9, 2912, doi: 10.3389/fimmu.2018.02912.
  33. Abolhassani, H., Wang, Y., Hammarström, L., and Pan-Hammarström, Q. (2021) Hallmarks of cancers: primary antibody deficiency versus other inborn errors of immunity, Front. Immunol., 12, 720025, doi: 10.3389/FIMMU.2021.720025.
  34. Hauck, F., Voss, R., Urban, C., and Seidel, M. G. (2018) Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders, J. Allergy Clin. Immunol., 141, 59-68.e4, doi: 10.1016/j.jaci.2017.06.009.
  35. Kebudi, R., Kiykim, A., and Sahin, M. K. (2019) Primary immunodeficiency and cancer in children; a review of the literature, Curr. Pediatr. Rev., 15, 245-250, doi: 10.2174/1573396315666190917154058.
  36. Shapiro, R. S. (2011) Malignancies in the setting of primary immunodeficiency: implications for hematologists/oncologists, Am. J. Hematol., 86, 48-55, doi: 10.1002/AJH.21903.
  37. Worth, A. J. J., Houldcroft, C. J., and Booth, C. (2016) Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host, Br. J. Haematol., 175, 559-576, doi: 10.1111/BJH.14339.
  38. Notarangelo, L. D., and Ochs, H. D. (2003) Wiskott-Aldrich Syndrome: A model for defective actin reorganization, cell trafficking and synapse formation, Curr. Opin. Immunol., 15, 585-591, doi: 10.1016/S0952-7915(03)00112-2.
  39. Fournier, B., Mahlaoui, N., Moshous, D., and de Villartay, J. P. (2022) Inborn errors of immunity caused by defects in the DNA damage response pathways: Importance of minimizing treatment-related genotoxicity, Pediatr. Allergy Immunol., 33, e13820, doi: 10.1111/PAI.13820.
  40. Ratnaparkhe, M., Wong, J. K. L., Wei, P. C., Hlevnjak, M., Kolb, T., Simovic, M., Haag, D., Paul, Y., Devens, F., Northcott, P., Jones, D. T. W., Kool, M., Jauch, A., Pastorczak, A., Mlynarski, W., Korshunov, A., Kumar, R., Downing, S. M., Pfister, S. M., Zapatka, M., McKinnon, P. J., Alt, F. W., Lichter, P., and Ernst, A. (2018) Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors, Nat. Commun., 9, 4760, doi: 10.1038/S41467-018-06925-4.
  41. de Miranda, N. F. C. C., Björkman, A., and Pan-Hammarström, Q. (2011) DNA repair: The link between primary immunodeficiency and cancer, Ann. N. Y. Acad. Sci., 1246, 50-63, doi: 10.1111/j.1749-6632.2011.06322.x.
  42. Notarangelo, L. D., Kim, M. S., Walter, J. E., and Lee, Y. N. (2016) Human RAG mutations: biochemistry and clinical implications, Nat. Rev. Immunol., 16, 234, doi: 10.1038/NRI.2016.28.
  43. Felgentreff, K., Lee, Y. N., Frugoni, F., Du, L., van der Burg, M., Giliani, S., Tezcan, I., Reisli, I., Mejstrikova, E., de Villartay, J. P., Sleckman, B. P., Manis, J., and Notarangelo, L. D. (2015) Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency, J. Allergy Clin. Immunol., 136, 140-150.e7, doi: 10.1016/j.jaci.2015.03.005.
  44. Woodbine, L., Gennery, A. R., and Jeggo, P. A. (2014) The clinical impact of deficiency in DNA non-homologous end-joining, DNA Repair (Amst.), 16, 84-96, doi: 10.1016/j.dnarep.2014.02.011.
  45. Rothblum-Oviatt, C., Wright, J., Lefton-Greif, M. A., McGrath-Morrow, S. A., Crawford, T. O., and Lederman, H. M. (2016) Ataxia telangiectasia: a review, Orphanet J. Rare Dis., 11, 159, doi: 10.1186/s13023-016-0543-7.
  46. Shiloh, Y., and Ziv, Y. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more, Nat. Rev. Mol. Cell Biol., 14, 197-210, doi: 10.1038/nrm3546.
  47. Sandoval, C., and Swift, M. (2003) Hodgkin disease in ataxia-telangiectasia patients with poor outcomes, Med. Pediatr. Oncol., 40, 162-166, doi: 10.1002/mpo.10251.
  48. Suarez, F., Mahlaoui, N., Canioni, D., Andriamanga, C., Dubois d'Enghien, C., Brousse, N., Jais, J. P., Fischer, A., Hermine, O., and Stoppa-Lyonnet, D. (2015) Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies, J. Clin. Oncol., 33, 202-208, doi: 10.1200/JCO.2014.56.5101.
  49. Tikoo, S., and Sengupta, S. (2010) Time to bloom, Genome Integr., 1, 14, doi: 10.1186/2041-9414-1-14.
  50. Wu, L., and Hickson, I. O. (2003) The Bloom's syndrome helicase suppresses crossing over during homologous recombination, Nature, 426, 870-874, doi: 10.1038/nature02253.
  51. Ralf, C., Hickson, I. D., and Wu, L. (2006) The Bloom's syndrome helicase can promote the regression of a model replication fork, J. Biol. Chem., 281, 22839-22846, doi: 10.1074/jbc.M604268200.
  52. Bohr, V. A. (2008) Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance, Trends Biochem. Sci., 33, 609-620, doi: 10.1016/j.tibs.2008.09.003.
  53. Sokolenko, A. P., Iyevleva, A. G., Preobrazhenskaya, E. V., Mitiushkina, N. V., Abysheva, S. N., Suspitsin, E. N., Kuligina, E. Sh., Gorodnova, T. V., Pfeifer, W., Togo, A. V., Turkevich, E. A., Ivantsov, A. O., Voskresenskiy, D. V., Dolmatov, G. D., Bit-Sava, E. M., Matsko, D. E., Semiglazov, V. F., Fichtner, I., Larionov, A. A., Kuznetsov, S. G., Antoniou, A. C., and Imyanitov, E. N. (2011) High prevalence and breast cancer predisposing role of the BLM c.1642 C>T (Q548X) mutation in Russia, Int. J. Cancer, 130, 2867-2873, doi: 10.1002/ijc.26342.
  54. Suspitsin, E. N., Yanus, G. A., Sokolenko, A. P., Yatsuk, O. S., Zaitseva, O. A., Bessonov, A. A., Ivantsov, A. O., Heinstein, V. A., Klimashevskiy, V. F., Togo, A. V., and Imyanitov, E. N. (2014) Development of breast tumors in CHEK2, NBN/NBS1 and BLM mutation carriers does not commonly involve somatic inactivation of the wild-type allele, Med. Oncol., 31, 828, doi: 10.1007/s12032-013-0828-9.
  55. Wolska-Kuśnierz, B., Gregorek, H., Chrzanowska, K., Piątosa, B., Pietrucha, B., Heropolitańska-Pliszka, E., Pac, M., Klaudel-Dreszler, M., Kostyuchenko, L., Pasic, S., Marodi, L., Belohradsky, B. H., Čižnár, P., Shcherbina, A., Kilic, S. S., Baumann, U., Seidel, M. G., Gennery, A. R., Syczewska, M., Mikołuć, B., Kałwak, K., Styczyński, J., Pieczonka, A., Drabko, K., Wakulińska, A., Gathmann, B., Albert, M. H., Skarżyńska, U., Bernatowska, E., and Inborn Errors Working Party of the Society for European Blood and Marrow Transplantation and the European Society for Immune Deficiencies (2015) Nijmegen Breakage Syndrome: clinical and immunological features, long-term outcome and treatment options - a retrospective analysis, J. Clin. Immunol., 35, 538-549, doi: 10.1007/s10875-015-0186-9.
  56. Syed, A., and Tainer, J. A. (2018) The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair, Annu. Rev. Biochem., 87, 263, doi: 10.1146/ANNUREV-BIOCHEM-062917-012415.
  57. Seemanova, E., Varon, R., Vejvalka, J., Jarolim, P., Seeman, P., Chrzanowska, K. H., Digweed, M., Resnick, I., Kremensky, I., Saar, K., Hoffmann, K., Dutrannoy, V., Karbasiyan, M., Ghani, M., Barić, I., Tekin, M., Kovacs, P., Krawczak, M., Reis, A., Sperling, K., and Nothnagel, M. (2016) The Slavic NBN founder mutation: a role for reproductive fitness? PLoS One, 11, e0167984, doi: 10.1371/journal.pone.0167984.
  58. Sharapova, S. O., Pashchenko, O. E., Bondarenko, A. V., Vakhlyarskaya, S. S., Prokofjeva, T., Fedorova, A. S., Savchak, I., Mareika, Y., Valiev, T. T., Popa, A., Tuzankina, I. A., Vlasova, E. V., Sakovich, I. S., Polyakova, E. A., Rumiantseva, N. V., Naumchik, I. V., Kulyova, S. A., Aleshkevich, S. N., Golovataya, E. I., Minakovskaya, N. V., Belevtsev, M. V., Latysheva, E. A., Latysheva T. V., Beznoshchenko, A. G., Akopyan, H., Makukh, H., Kozlova, O., Varabyou, D. S., Ballow, M., Ong, M. S., Walter, J. E., Kondratenko, I. V., Kostyuchenko, L. V., and Aleinikova, O. V. (2021) Geographical distribution, incidence, malignancies, and outcome of 136 Eastern Slavic patients with Nijmegen Breakage Syndrome and NBN founder variant c.657_661del5, Front. Immunol., 11, 602482, doi: 10.3389/FIMMU.2020.602482.
  59. Buslov, K. G., Iyevleva, A. G., Chekmariova, E. V., Suspitsin, E. N., Togo, A. V., Kuligina, E. Sh., Sokolenko, A. P., Matsko, D. E., Turkevich, E. A., Lazareva, Y. R., Chagunava, O. L., Bit-Sava, E. M., Semiglazov, V. F., Devilee, P., Cornelisse, C., Hanson, K. P., and Imyanitov, E. N. (2005) NBS1 657del5 mutation may contribute only to a limited fraction of breast cancer cases in Russia, Int. J. Cancer, 114, 585-589, doi: 10.1002/ijc.20765.
  60. Auerbach, A. D. (2009) Fanconi anemia and its diagnosis, Mutat. Res., 668, 4-10, doi: 10.1016/j.mrfmmm.2009.01.013.
  61. Badra Fajardo, N., Taraviras, S., and Lygerou, Z. (2022) Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy, Trends Cancer, 8, 467-481, doi: 10.1016/J.TRECAN.2022.01.015.
  62. Prokofyeva, D., Bogdanova, N., Dubrowinskaja, N., Bermisheva, M., Takhirova, Z., Antonenkova, N., Turmanov, N., Datsyuk, I., Gantsev, S., Christiansen, H., Park-Simon, T. W., Hillemanns, P., Khusnutdinova, E., and Dörk, T. (2012) Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom's syndrome, is associated with breast cancer in Slavic populations, Breast Cancer Res. Treat., 137, 533-539, doi: 10.1007/s10549-012-2357-1.
  63. Tavtigian, S. V., Oefner, P. J., Babikyan, D., Hartmann, A., Healey, S., Le Calvez-Kelm, F., Lesueur, F., Byrnes, G. B., Chuang, S. C., Forey, N., Feuchtinger, C., Gioia, L., Hall, J., Hashibe, M., Herte, B., McKay-Chopin, S., Thomas, A., Vallée, M. P., Voegele, C., Webb, P. M., Whiteman, D. C., Australian Cancer Study, Breast Cancer Family Registries (BCFR), Kathleen Cuningham Foundation Consortium for Research into Familial Aspects of Breast Cancer (kConFab), Sangrajrang, S., Hopper, J. L., Southey, M. C., Andrulis, I. L., John, E. M., and Chenevix-Trench, G. (2009) Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer, Am. J. Hum. Genet., 85, 427-446, doi: 10.1016/j.ajhg.2009.08.018.
  64. Van Os, N. J. H., Roeleveld, N., Weemaes, C. M. R., Jongmans, M. C., Janssens, G. O., Taylor, A. M., Hoogerbrugge, N., and Willemsen, M. A. (2016) Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline, Clin. Genet., 90, 105-117, doi: 10.1111/cge.12710.
  65. Seemanová, E., Jarolim, P., Seeman, P., Varon, R., Digweed, M., Swift, M., and Sperling, K. (2007) Cancer risk of heterozygotes with the NBN founder mutation, J. Natl. Cancer Inst., 99, 1875-1880, doi: 10.1093/jnci/djm251.
  66. Kratz, C. P., and Izraeli, S. (2017) Down syndrome, RASopathies, and other rare syndromes, Semin. Hematol., 54, 123-128, doi: 10.1053/J.SEMINHEMATOL.2017.04.008.
  67. Liao, J., and Mehta, L. (2019) Molecular genetics of noonan syndrome and RASopathies, Pediatr. Endocrinol. Rev., 16 (Suppl 2), 435-446, doi: 10.17458/per.vol16.2019.lm.molecularnoonan.
  68. Riller, Q., and Rieux-Laucat, F. (2021) RASopathies: from germline mutations to somatic and multigenic diseases, Biomed. J., 44, 422, doi: 10.1016/J.BJ.2021.06.004.
  69. Walker, J. A., and Upadhyaya, M. (2018) Emerging therapeutic targets for neurofibromatosis type 1, Expert Opin. Ther. Targets, 22, 419-437, doi: 10.1080/14728222.2018.1465931.
  70. Choufani, S., Shuman, C., and Weksberg, R. (2013) Molecular findings in Beckwith-Wiedemann syndrome, Am. J. Med. Genet. C Semin. Med. Genet., 163C, 131-140, doi: 10.1002/AJMG.C.31363.
  71. Mussa, A., Molinatto, C., Baldassarre, G., Riberi, E., Russo, S., Larizza, L., Riccio, A., and Ferrero, G. B. (2016) Cancer risk in Beckwith-Wiedemann syndrome: a systematic review and meta-analysis outlining a novel (epi)genotype specific histotype targeted screening protocol, J. Pediatr., 176, 142-149.e1, doi: 10.1016/J.JPEDS.2016.05.038.
  72. Scott, R. H., Stiller, C. A., Walker, L., and Rahman, N. (2006) Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour, J. Med. Genet., 43, 705-715, doi: 10.1136/JMG.2006.041723.
  73. Eggermann, T., Maher, E. R., Kratz, C. P., and Prawitt, D. (2022) Molecular basis of Beckwith-Wiedemann syndrome spectrum with associated tumors and consequences for clinical practice, Cancers (Basel), 14, 3083, doi: 10.3390/cancers14133083.
  74. Pan, Z., Chen, C., Long, H., Lei, C., Tang, G., Li, L., Feng, J., and Chen, F. (2013) Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis, Mol. Med. Rep., 7, 969-974, doi: 10.3892/MMR.2013.1279.
  75. DeBaun, M. R., Ess, J., and Saunders, S. (2001) Simpson Golabi Behmel syndrome: progress toward understanding the molecular basis for overgrowth, malformation, and cancer predisposition, Mol. Genet. Metab., 72, 279-286, doi: 10.1006/MGME.2001.3150.
  76. Astuti, D., Morris, M. R., Cooper, W. N., Staals, R. H., Wake, N. C., Fews, G. A., Gill, H., Gentle, D., Shuib, S., Ricketts, C. J., Cole, T., van Essen, A. J., van Lingen, R. A., Neri, G., Opitz, J. M., Rump, P., Stolte-Dijkstra, I., Müller, F., Pruijn, G. J., Latif, F., and Maher, E. R. (2012) Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility, Nat. Genet., 44, 277-284, doi: 10.1038/NG.1071.
  77. Morris, M. R., Astuti, D., and Maher, E. R. (2013) Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2, Am. J. Med. Genet. C Semin. Med. Genet., 163C, 106-113, doi: 10.1002/AJMG.C.31358.
  78. Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J., and Jaworski, J. (2017) Molecular neurobiology of mTOR, Neuroscience, 341, 112-153, doi: 10.1016/j.neuroscience.2016.11.017.
  79. Lam, H. C., Nijmeh, J., and Henske, E. P. (2017) New developments in the genetics and pathogenesis of tumours in tuberous sclerosis complex, J. Pathol., 241, 219-225, doi: 10.1002/path.4827.
  80. Martin, K., Zhou, W., Bowman, M., Shih, J., Au, K. S., Dittenhafer-Reed, K. E., Sisson, K. A., Koeman, J., Weisenberger, D. J., Cottingham, S. L., DeRoos, S. T., Devinsky, O., Winn, M. E., Cherniack, A. D., Shen, H., Northrup, H., Krueger, D. A., and MacKeigan, J. P. (2017) The genomic landscape of tuberous sclerosis complex, Nat. Commun., 8, 15816. doi: 10.1038/ncomms15816.
  81. Xiao, G. H., Chernoff, J., and Testa, J. R. (2003) NF2: the wizardry of merlin, Genes Chromosomes Cancer, 38, 389-399, doi: 10.1002/GCC.10282.
  82. Bachir, S., Shah, S., Shapiro, S., Koehler, A., Mahammedi, A., Samy, R. N., Zuccarello, M., Schorry, E., and Sengupta, S. (2021) Neurofibromatosis type 2 (NF2) and the implications for vestibular schwannoma and meningioma pathogenesis, Int. J. Mol. Sci., 22, 1-12, doi: 10.3390/IJMS22020690.
  83. Sherborne, A. L., Lavergne, V., Yu, K., Lee, L., Davidson, P. R., Mazor, T., Smirnoff, I. V., Horvai, A. E., Loh, M., DuBois, S. G., Goldsby, R. E., Neglia, J. P., Hammond, S., Robison, L. L., Wustrack, R., Costello, J. F., Nakamura, A. O., Shannon, K. M., Bhatia, S., and Nakamura, J. L. (2017) Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors, Clin. Cancer Res., 23, 1852-1861, doi: 10.1158/1078-0432.CCR-16-0610.
  84. Kleinerman, R. A., Yu, C. L., Little, M. P., Li, Y., Abramson, D., Seddon, J., and Tucker, M. A. (2012) Variation of second cancer risk by family history of retinoblastoma among long-term survivors, J. Clin. Oncol., 30, 950-957, doi: 10.1200/JCO.2011.37.0239.
  85. Sharif, S., Ferner, R., Birch, J. M., Gillespie, J. E., Gattamaneni, H. R., Baser, M. E., and Evans, D. G. (2006) Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy, J. Clin. Oncol., 24, 2570-2575, doi: 10.1200/JCO.2005.03.8349.
  86. Pastorczak, A., Szczepanski, T., and Mlynarski, W. (2016) Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome, Eur. J. Med. Genet., 59, 126-132, doi: 10.1016/j.ejmg.2016.01.007.
  87. Slack, J., Albert, M. H., Balashov, D., Belohradsky, B. H., Bertaina, A., Bleesing, J., Booth, C., Buechner, J., Buckley, R. H., Ouachée-Chardin, M., Deripapa, E., Drabko, K., Eapen, M., Feuchtinger, T., Finocchi, A., Gaspar, H. B., Ghosh, S., Gillio, A., Gonzalez-Granado, L. I., Grunebaum, E., Güngör, T., Heilmann, C., Helminen, M., Higuchi, K., Imai, K., Kalwak, K., Kanazawa, N., Karasu, G., Kucuk, Z. Y., Laberko, A., Lange, A., Mahlaoui, N., Meisel, R., Moshous, D., Muramatsu, H., Parikh, S., Pasic, S., Schmid, I., Schuetz, C., Schulz, A., Schultz, K. R., Shaw, P. J., Slatter, M. A., Sykora, K. W., Tamura, S., Taskinen, M., Wawer, A., Wolska-Kuśnierz, B., Cowan, M. J., Fischer, A., Gennery, A. R., Inborn Errors Working Party of the European Society for Blood and Marrow Transplantation and the European Society for Immunodeficiencies; Stem Cell Transplant for Immunodeficiencies in Europe (SCETIDE), and Center for International Blood and Marrow Transplant Research, Primary Immunodeficiency Treatment Consortium (2018) Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders, J. Allergy Clin. Immunol., 141, 322-328.e10, doi: 10.1016/j.jaci.2017.02.036.
  88. Tran, H., Nourse, J., Hall, S., Green, M., Griffiths, L., and Gandhi, M. K. (2008) Immunodeficiency-associated lymphomas, Blood Rev., 22, 261-281, doi: 10.1016/j.blre.2008.03.009.
  89. Luo, C., Ye, W. R., Shi, W., Yin, P., Chen, C., He, Y. B., Chen, M. F., Zu, X. B., and Cai, Y. (2022) Perfect match: mTOR inhibitors and tuberous sclerosis complex, Orphanet J. Rare Dis., 17, 106, doi: 10.1186/S13023-022-02266-0.
  90. Lodi, M., Boccuto, L., Carai, A., Cacchione, A., and Miele, E. (2020) Low-grade gliomas in patients with Noonan syndrome: case-based review of the literature, Diagnostics (Basel, Switzerland), 10, 582, doi: 10.3390/DIAGNOSTICS10080582.
  91. Al-Sarhani, H., Gottumukkala, R. V., Grasparil, A. D. S. 2nd, Tung, E. L., Gee, M. S., and Greer, M. C. (2020) Screening of cancer predisposition syndromes, Pediatr. Radiol., 52, 401-417, doi: 10.1007/s00247-021-05023-w.
  92. Brodeur, G. M., Nichols, K. E., Plon, S. E., Schiffman, J. D., and Malkin, D. (2017) Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr, Clin. Cancer Res., 23, e1-e5, doi: 10.1158/1078-0432.CCR-17-0702.
  93. McNeil, E. D., Brown, M., Ching, A., and Debaun, M. R. (2001) Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model, Med. Pediatr. Oncol., 37, 349-356, doi: 10.1002/mpo.1209.
  94. Villani, A., Shore, A., Wasserman, J. D., Stephens, D., Kim, R. H., Druker, H., Gallinger, B., Naumer, A., Kohlmann, W., Novokmet, A., Tabori, U., Tijerin, M., Greer, M. L., Finlay, J. L., Schiffman, J. D., and Malkin, D. (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11-year follow-up of a prospective observational study, Lancet Oncol., 17, 1295-1305, doi: 10.1016/S1470-2045(16)30249-2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences