MOLECULAR DYNAMICS SIMULATION OF MOLTEN NiF2: STRUCTURE AND TRANSPORT PROPERTIES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Computer modeling of molten nickel fluoride was carried out using classical molecular dynamics in the temperature range 1750–1900 K. The density of crystalline NiF2 with a relative error of less than 1% verified the parameters of the pair potential obtained in the framework of the quantum-chemical approximation. The calculated radial distribution functions and coordination numbers for the Ni–F pair indicate a distorted octahedral environment of the nickel cation in the melt. In this case, a slight decrease in the nearest cation-anion distance was found in comparison with solid nickel fluoride. It is shown that the curve of the radial distribution function for the fluorine-fluorine pair near the main peak splits into two maxima. The position of the first peak at 2.67 Å is characterized by a coordination number of 5.1 and describes neighboring anions in a distorted octahedron. Whereas, the second maximum can be associated with fluorine anions located along the F–Ni–F line with a peak position at 3.83 Å, which indicates a decrease in a similar distance compared to the crystal. The coefficients of self-diffusion of ions and the viscosity of the NiF2 melt at different temperatures were calculated.

About the authors

М. А. Kobelev

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Author for correspondence.
Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

D. О. Zakiryanov

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

V. А. Tukachev

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

References

  1. Jiang D., Zhang D., Li X., Wang S., Wang C., Qin H., Guo Y., Tian W., Su G.H., Qiu S // Renew. Sustain. Energy Rev. 2022. 161. P. 112345. https://doi.org/10.1016/j.rser.2022.112345
  2. Karfidov E., Nikitina E., Erzhenkov M., Seliverstov K., Chernenky P., Mullabaev A., Tsvetov V., Mushnikov P., Karimov K., Molchanovs N., Kuznetsova A. // Materials. 2022. 15. P. 761. https://doi.org/10.3390/ma15030761
  3. Ocadiz-Flores J.A., Capelli E., Raison P.E., Konings R.J.M., Smith A.L. // J. Chem. Thermodyn. 2018. 121. P. 17–26. https://doi.org/10.1016/j.jct.2018.01.023
  4. Wood N.D., Howe R.A. // J. Phys. C: Solid State Phys. 1988. 21. P. 3177–3190. https://doi.org/10.1088/0022-3719/21/17/009
  5. Tasseven C., Alcaraz O., Trullàs J., Silbert M. // High Temp. Mater. Process. 1998. 17. P. 163–176. https://doi.org/10.1515/HTMP.1998.17.3.163
  6. Zakiryanov D., Kobelev M., Tkachev N. // Russian Metallurgy. 2022. № 8. P. 972–977. https://doi.org/10.1134/S0036029522080250
  7. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Phase Equil. 2020. 506. P. 112369. https://doi.org/10.1016/j.fluid.2019.112369
  8. CRC Handbook of Chemistry and Physics, 95th Edition, ed. Haynes, William M, CRC Press, 2014.
  9. Stout J.W., Reed S.A. // J. Am. Chem. Soc. 1954. 76. P. 5279–5281. https://doi.org/10.1021/ja01650a005
  10. Young J.P., Smith G.P. // J. Chem. Phys. 1964. 40. P. 913–914. http://dx.doi.org/10.1063/1.1725233
  11. Zakiryanov D. // Comput. Theor. Chem. 2022. 1210. P. 113646. https://doi.org/10.1016/j.comptc.2022.113646

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (25KB)
3.

Download (962KB)
4.

Download (98KB)
5.

Download (106KB)
6.

Download (26KB)
7.

Download (24KB)

Copyright (c) 2023 М.А. Кобелев, Д.О. Закирьянов, В.А. Тукачев